4.7 Article

Regulatory T cells in human and angiotensin II-induced mouse abdominal aortic aneurysms

期刊

CARDIOVASCULAR RESEARCH
卷 107, 期 1, 页码 98-107

出版社

OXFORD UNIV PRESS
DOI: 10.1093/cvr/cvv119

关键词

Abdominal aortic aneurysm; Regulatory T-cell; Interleukin-10; Inflammatory cell; Adoptive transfer

资金

  1. National Institutes of Health [HL60942, HL81090, HL88547, HL48743, HL080472]

向作者/读者索取更多资源

Aims Regulatory T cells (Tregs) protect mice from angiotensin II (Ang-II)-induced abdominal aortic aneurysms (AAA). This study tested whether AAA patients are Treg-insufficient and the Treg molecular mechanisms that control AAA pathogenesis. Methods and results ELISA determined the Foxp3 concentration in blood cell lysates from 485 AAA patients and 204 age-and sex-matched controls. AAA patients exhibited lower blood cell Foxp3 expression than controls (P < 0.0001). Pearson's correlation test demonstrated a significant but negative correlation between Foxp3 and AAA annual expansion rate before (r = -0.147, P = 0.007) and after (r = -0.153, P = 0.006) adjustment for AAA risk factors. AAA in apolipoprotein E-deficient (Apoe(-/-)) mice that received different doses of Ang-II exhibited a negative correlation of lesion Foxp3(+) Treg numbers with AAA size (r = -0.883, P < 0.0001). Adoptive transfer of Tregs from wild-type (WT) and IL10-deficient (Il10(-/-)) mice increased AAA lesion Treg content, but only WT mice Tregs reduced AAA size, AAA incidence, blood pressure, lesion macrophage and CD4(+) and CD8(+) T-cell accumulation, and angiogenesis with concurrent increase of lesion collagen content. Both AAA lesion immunostaining and plasma ELISA demonstrated that adoptive transfer of WT Tregs, but not Il10(-/-) Tregs, reduced the expression of MCP-1. In vitro cell culture and aortic ring assay demonstrated that only Tregs from WT mice, but not those from Il10(-/-) mice, reduced macrophage MCP-1 secretion, macrophage and vascular cell protease expression and activity, and aortic ring microvessel formation. Conclusion This study supports a protective role of Tregs in human and experimental AAA by releasing IL10 to suppress inflammatory cell chemotaxis, arterial wall remodelling, and angiogenesis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据