4.2 Article

Effect of a Balanced Concentration of Hydrogen on Graphene CVD Growth

期刊

JOURNAL OF NANOMATERIALS
卷 2016, 期 -, 页码 -

出版社

HINDAWI LTD
DOI: 10.1155/2016/9640935

关键词

-

资金

  1. Greek State Scholarships Foundation
  2. AGAUR from the Generalitat de Catalunya [2014SGR984]
  3. MICINN from Spanish Government [MAT2010-20468, ENE2014-56109-C3-1-R]

向作者/读者索取更多资源

The extraordinary properties of graphene make it one of the most interesting materials for future applications. Chemical vapor deposition (CVD) is the synthetic method that permits obtaining large areas of monolayer graphene. To achieve this, it is important to find the appropriate conditions for each experimental system. In our CVD reactor working at low pressure, important factors appear to be the pretreatment of the copper substrate, considering both its cleaning and its annealing before the growing process. The carbon precursor/hydrogen flow ratio and its modification during the growth are significant in order to obtain large area graphene crystals with few defects. In this work, we have focused on the study of the methane and the hydrogen flows to control the production of single layer graphene (SLG) and its growth time. In particular, we observe that hydrogen concentration increases during a usual growing process (keeping stable the methane/hydrogen flow ratio) resulting in etched domains. In order to balance this increase, a modification of the hydrogen flow results in the growth of smooth hexagonal SLG domains. This is a result of the etching effect that hydrogen performs on the growing graphene. It is essential, therefore, to study the moderated presence of hydrogen.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据