4.7 Article

Unsteady magneto-nanofluid flow caused by a rotating cone with temperature dependent viscosity: A surgical implant application

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 222, 期 -, 页码 1183-1191

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2016.07.143

关键词

Nanofluid; Titanium; Titanium alloy; Temperature dependent viscosity; Magnetic field; Heat source/sink

向作者/读者索取更多资源

Nanofluids are potential heat transfer fluids with enhanced thermal and physical properties. In particular, the fluids embedded with titanium nanoparticles have tendency to control the heat transfer mechanism in surgical implant applications such as glass covering of iris, retina and glaucoma etc. External magnetic fields are capable to set the thermal and physical properties of magnetic-nanofluids and regulate the flow and heat transfer characteristics. With this incentive, a theoretical investigation is performed for exploring the flow and heat transfer behavior of magneto-nanofluids caused by a rotating cone in the presence of temperature dependent viscosity and heat source/sink. For this study, we considered Ti and Ti-alloy (Ti6Al4V is a titanium alloy with 90% titanium, 6% aluminum and 4% Vanadium) nanoparticles embedded in water. With the aid of similarity variables, we transformed the governing equations as ordinary differential equations and numerical solutions are found by employing Runge-Kutta and Newton's methods. We discussed the friction factor coefficients, local Nusselt number, flow and heat transfer performance of both nanofluids with the assistance of graphs and tables. We found that the heat transfer performance of Ti-water nanofluid is high when compared with the heat transfer performance of Ti-alloy water nanofluid. From this we can conclude that Ti-alloy combination nanofluids are useful for cooling processes. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据