4.7 Article

Modeling of stability conditions of natural gas clathrate hydrates using least squares support vector machine approach

期刊

JOURNAL OF MOLECULAR LIQUIDS
卷 223, 期 -, 页码 1081-1092

出版社

ELSEVIER
DOI: 10.1016/j.molliq.2016.09.009

关键词

Gas hydrates; Hydrate dissociation temperature; Phase equilibrium; LSSVM algorithm

向作者/读者索取更多资源

This paper concerns a novel computer-based approach namely Least Square version of Support Vector Machine (LSSVM) algorithm to estimate/represent hydrate forming/dissociating conditions of various gases in the presence of pure water or aqueous solutions of salt(s) and/or alcohol(s). To this end, several models have been presented to predict the hydrate dissociating temperature (HDT) of C-1, C-2, C-3, i-C-4, CO2, H2S, N-2, and natural gas mixtures in pure water or additive containing solutions. For modeling purpose, an extensive database comprising more than 3900 experimental data have been gathered from the literate from 1940 to 2013. The collected databank covers wide range of experimental conditions at solid/liquid/vapor or solid/ice/vapor equilibrium of distinct hydrate systems. All the proposed models reproduce the targets with R-2 of greater than 0.97. The predictions of the developed LSSVM models for hydrate systems of C-1, C-2, C-3, i-C-4, CO2, H2S, N-2, and natural gas mixtures are in good agreement with corresponding experimental data with the average absolute relative deviation percent (%AARD) equal to %0.22, %0.33, %0.26, %0.07, %0.47, %0.56, %0.08, and %0.34, respectively. (c) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据