4.0 Article

A highly efficient immobilized MAS1 lipase for the glycerolysis reaction of n-3 PUFA-rich ethyl esters

期刊

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.molcatb.2016.09.012

关键词

n-3 PUFA-rich ethyl esters; Triacylglycerols; Immobilized MAST lipase; Glycerolysis; Molecular distillation

资金

  1. National High Technology Research and Development Program of China (863 program) [2014AA093514, 2014AA093601]
  2. Science and Technology Planning project of Guangdong province [2014B020204003, 2015B020231006]

向作者/读者索取更多资源

This study reported that immobilized MAST lipase showed high catalytic efficiency in the production of triacylglycerols (TAG) highly enriched with n-3 polyunsaturated fatty acids (PUFA) by glycerolysis of ethyl esters (EE). Immobilized MAS1 lipase was found to have no regiospecificity and be a more suitable catalyst for the glycerolysis of n-3 PUFA-rich EE compared with other enzymes. Higher TAG content (73.9%) and EE conversion (82%) were obtained by immobilized MAST lipase than those by Novozym 435 (29.6% and 54.8%, respectively) and Lipozyme RM IM (10% and 49%, respectively). Besides, the effects of temperature, enzyme loading and n-3 PUFA-rich EE/glycerol molar ratio on TAG content were evaluated using response surface methodology. The results showed that temperature, enzyme loading and n-3 PUFA-rich EE/glycerol molar ratio had significant effects on TAG content. The maximum TAG content (76.5%) was achieved under the optimal conditions (enzyme loading of 163.8 U/g substrate, n-3 PUFA-rich EE/glycerol molar ratio of 4.13:1 at 65 degrees C). Subsequently, the glycerolysis reaction mixtures were further purified by molecular distillation and highly pure n-3 PUFA-rich TAG (96.2%) with similar fatty acids composition to the substrate (EE) was obtained in the final products. In addition, the obtained final products had low acid value and peroxide value (0.03 mg KOH/g and 3.2 meq/kg, respectively). These results indicated that immobilized MAS1 lipase is a promising catalyst for the synthesis of TAG in industrial application. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.0
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据