4.7 Article

Structural Conservation and E2F Binding Specificity within the Retinoblastoma Pocket Protein Family

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 428, 期 20, 页码 3960-3971

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2016.08.017

关键词

cell cycle regulation; transcription factors; protein-protein interactions; protein phosphorylation; isothermal titration calorimetry

资金

  1. National Institutes of Health [R01CA132685]
  2. Canadian Institutes of Health [MOP-89765]
  3. OGS scholarship

向作者/读者索取更多资源

The human pocket proteins retinoblastoma (Rb), p107, and p130 are critical negative regulators of the cell cycle and contribute to tumor suppression. While strong structural conservation within the pocket protein family provides for some functional redundancy, important differences have been observed and may underlie the reason that Rb is a uniquely potent tumor suppressor. It has been proposed that distinct pocket protein activities are mediated by their different E2F transcription factor binding partners. In humans, Rb binds E2F1-E2F5, whereas p107 and p130 almost exclusively associate with E2F4 and E2F5. To identify the molecular determinants of this specificity, we compared the crystal structures of Rb and p107 pocket domains and identified several key residues that contribute to E2F selectivity in the pocket family. Mutation of these residues in p107 to match the analogous residue in Rb results in an increase in affinity for E2F1 and E2F2 and an increase in the ability of p107 to inhibit E2F2 transactivation. Additionally, we investigated how phosphorylation by Cyclin-dependent kinase on distinct residues regulates p107 affinity for the E2F4 transactivation domain. We found that phosphorylation of residues S650 and S975 weakens the E2F4 transactivation domain binding. Our data reveal molecular features of pocket proteins that are responsible for their similarities and differences in function and regulation. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据