4.7 Article

A Genetically Encoded Probe for Live-Cell Imaging of H4K20 Monomethylation

期刊

JOURNAL OF MOLECULAR BIOLOGY
卷 428, 期 20, 页码 3885-3902

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jmb.2016.08.010

关键词

Histone modification; Inactive X chromosome; Intracellular antibody; Live-cell imaging

资金

  1. Japan Society for the Promotion of Science (JSPS)
  2. Waseda Research Institute for Science and Engineering
  3. Waseda University
  4. JSPS KAKENHI [JP25118714, JP26440098, JP26116511, JP26251037, JP25116006, JP20114008, JP25116002, JP25116005, JP26291071]
  5. Japan Synchrotron Radiation Research Institute (JASRI) [2012B1048, 2013A1036, 2013B1060, 2014B1125, 2015A1020, 2015B2020]
  6. Photon Factory Program Advisory Committee [2012G569, 2014G556]
  7. Grants-in-Aid for Scientific Research [26251037, 26440098, 25116006, 15H04372, 15KT0083, 16H00816, 25712035, 15K07157, 16H01309, 26291007] Funding Source: KAKEN

向作者/读者索取更多资源

Eukaryotic gene expression is regulated in the context of chromatin. Dynamic changes in post-translational histone modification are thought to play key roles in fundamental cellular functions such as regulation of the cell cycle, development, and differentiation. To elucidate the relationship between histone modifications and cellular functions, it is important to monitor the dynamics of modifications in single living cells. A genetically encoded probe called mintbody (modification-specific intracellular antibody), which is a single-chain variable fragment tagged with a fluorescent protein, has been proposed as a useful visualization tool. However, the efficacy of intracellular expression of antibody fragments has been limited, in part due to different environmental conditions in the cytoplasm compared to the endoplasmic reticulum where secreted proteins such as antibodies are folded. In this study, we have developed a new mintbody specific for histone H4 Lys20 monomethylation (H4K2Ome1). The specificity of the H4K2Ome1-mintbody in living cells was verified using yeast mutants and mammalian cells in which this target modification was diminished. Expression of the H4K20me1-mintbody allowed us to monitor the oscillation of H4K2Ome1 levels during the cell cycle. Moreover, dosage-compensated X chromosomes were visualized using the H4K20me1-mintbody in mouse and nematode cells. Using X-ray crystallography and mutational analyses, we identified critical amino acids that contributed to stabilization and/or proper folding of the mintbody. Taken together, these data provide important implications for future studies aimed at developing functional intracellular antibodies. Specifically, the H4K2Ome1-mintbody provides a powerful tool to track this particular histone modification in living cells and organisms. (C) 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据