4.7 Article

Rye as an Energy Cover Crop: Management, Forage Quality, and Revenue Opportunities for Feed and Bioenergy

期刊

AGRICULTURE-BASEL
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/agriculture12101691

关键词

energy cover crop; cereal rye; biogas; renewable natural gas; forage quality; double-crop; nitrogen fertilizer

类别

资金

  1. U.S. Department of Energy under the Bioenergy Technologies Office [EE0007088]
  2. United States Department of Agriculture National Institute of Food and Agriculture [2020-68012-31824]

向作者/读者索取更多资源

Harvesting winter rye as an energy cover crop can meet growing food and energy demand, provide new revenue streams, and enhance ecosystem services without changing land use. Digesting rye can improve forage quality and produce renewable natural gas, with the residue available as feed protein concentrate. The integrated system has potential revenue from renewable bioenergy, carbon markets, and digestate feed protein, but there are substantial costs associated with renewable natural gas.
Harvesting a winter rye energy cover crop (Secale cereale L.) could help sustain growing food and energy demand, provide new revenue streams, and enhance ecosystem services without inducing land-use change. A two-year field experiment with three planting methods and three N fertilization rates (0, 60, and 120 kg N ha(-1)) that produced >5.0 Mg ha(-1 )yr(-1) of biomass was evaluated for (1) fresh and anaerobically digested rye forage quality; (2) revenue potential from renewable bioenergy, carbon markets, and digestate feed protein; and (3) potential greenhouse gas (GHG) offsets. We showed that rye can be harvested as forage for animals or anaerobically digested to produce renewable natural gas (RNG), with the residue after digestion (digestate) still available as a feed protein concentrate. Anaerobically digesting rye improved forage quality indicators. Digestion significantly decreased acid- and neutral-detergent fiber (ADF and NDF) by 5.2% and 17.8%, respectively, while significantly increasing crude protein (CP) (33.6%), total digestible nutrients (TDN) (2.0%), relative feed value (RFV) (23.6%), net energy for lactation (8.3%), maintenance (7.5%), and gain (20.0%). Using market prices for RNG, high protein feed, and GHG mitigation, potential on-farm revenue ranged from USD 307 Mg-1 and USD 502 Mg-1 dry matter with an average of USD 402 Mg-1. However, there are substantial costs associated with RNG and the revenue potential does not represent the profitability of this system. Evaluation of the integrated system showed GHG emissions associated with rye fertilization were more than offset by the benefits of increasing yield in the 60 kg N ha(-1) treatment. The overall carbon footprint of the integrated system was strongly carbon negative, confirming the potential of this strategy to sustainably intensify land use in the Midwestern United States.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据