4.4 Article

Fabrication of microfluidic devices: improvement of surface quality of CO2 laser machined poly( methylmethacrylate) polymer

出版社

IOP PUBLISHING LTD
DOI: 10.1088/0960-1317/27/1/015021

关键词

microfluidics; laser engraving; PMMA; rapid prototyping

资金

  1. School of Engineering at Deakin

向作者/读者索取更多资源

Laser engraving has considerable potential for the rapid and cost effective manufacturing of polymeric microfluidic devices. However, fabricated devices are hindered by relatively large surface roughness in the engraved areas, which can perturb smooth fluidic flow and can damage sensitive biological components. This effect is exacerbated when engraving at depths beyond the laser focal range, limiting the production of large aspect ratio devices such as microbioreactors. This work aims to overcome such manufacturing limitations and to realise more reproducible and defect free microfluidic channels and structures. We present a strategy of multiple engraving passes alongside solvent polymer reflow for shallow depth (< 500 mu m) and a layer cutting with laminate bonding for larger depth (> 500 mu m) features. To examine the proposed methodologies, capillary action and bioreactor microfluidic devices were fabricated and evaluated. Results indicate that the multiple engraving technique could reproduce engraved microfluidic channels to depths between 50-470 mu m, both rapidly (6-8 min) and with low average surface roughness (1.5-2.5 mu m). The layer cutting approach was effective at manufacturing microfluidic devices with depths < 500 mu m, rapidly (< 1 min) and with low surface roughness. Ultimately, the proposed methodology is highly beneficial for the rapid development of polymer-based microfluidic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据