4.5 Article

Implementation of an MPPT technique of a solar module with supervised machine learning

期刊

FRONTIERS IN ENERGY RESEARCH
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2022.932653

关键词

MPPT; solar; MATLAB/Simulink (C); machine learning; PV panel

向作者/读者索取更多资源

Automated calibration of MPPT algorithm is crucial for maximizing energy harnessing from solar power. We proposed a method using supervised machine learning for MPPT analysis in a photovoltaic system and verified its effectiveness in a hardware setup.
Automated calibration of a maximum power point tracking (MPPT) algorithm for the photovoltaic (PV) system is pivotal for harnessing the maximum possible energy from solar power. However, most existing calibration methods of such an MPPT system are cumbersome and vary greatly with the environmental condition. Hence, an automated pipeline capable of performing suitable adjustments is highly desirable. We proposed a method using supervised machine learning (ML) in a solar PV system for MPPT analysis. For this purpose, an overall schematic diagram of a PV system is designed and simulated to create a dataset in MATLAB/Simulink. Thus, by analyzing the output characteristics of a solar cell, an improved MPPT algorithm on the basis of a neural network (NN) method is put forward to track the maximum power point (MPP) of solar cell modules. Moreover, we implemented the algorithm in a hardware setup and verified the theoretical result with the empirical data. Typically, the performance accuracy of the NN models is around 97 similar to 98%. But our proposed model shows an even higher efficiency (99.8% approximately) without adding to any extra computational cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据