4.5 Article

Second-generation biofuel production from the organic fraction of municipal solid waste

期刊

FRONTIERS IN ENERGY RESEARCH
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenrg.2022.919415

关键词

biofuels; waste management; bioethanol; fermentation; management; municipal solid waste

资金

  1. BioRen H2020 project - Innovation and Networks Executive Agency (INEA) [818310]
  2. H2020 Societal Challenges Programme [818310] Funding Source: H2020 Societal Challenges Programme

向作者/读者索取更多资源

Biofuels are an attractive alternative to fossil fuels and can help European Union countries achieve their climate and energy goals. By producing second-generation biofuels from the organic fraction of municipal solid wastes, a circular economy can be supported, contributing to effective waste management.
Biofuels are playing an increasingly important role since they are an attractive alternative to fossil fuels, access to which has been limited. Moreover, they can help the European Union countries meet their climate and energy objectives. There is a growing interest in the production of biofuels from the organic fraction of municipal solid wastes as second-generation biofuels. Such a solution supports a circular economy as an example of an effective approach in terms of effective waste management. The study presents a review of different biofuels with an emphasis on second-generation biofuels from lignocellulose biomass, highlighting the BioRen process, which is one of the waste-to-fuel conversion technologies. It allows for maintaining the value of materials within the economy. All stages of the process are described and material flow is presented. The framework of the BioRen project includes the bio-fermentation of the organic fraction by a two-stage enzymatic process simultaneously into bioethanol and isobutanol, which are then used to produce glycerol tertiary butyl ether. The post-fermentation sludge is treated by the hydrothermal carbonization method increasing the efficiency of the whole waste treatment process and closing the loop. The bio-coal resulting from the process of carbonization can be used as a fuel with a high-calorific value. The remaining fraction undergoes a physical-chemical and catalytic conversion of inorganic particles into their clean, dry, and inert components. The results show that in the BioRen project 78% of the heat that is produced during the process is recovered and used for electricity production. Moreover, 53% of waste is recovered and re-used, because the process is profitable, efficient, environmentally friendly, and maintains high-security standards. Such an example of advanced technology, with a high readiness level, obtained results, and experience may encourage European countries and facilities to implement such an effective solution, which supports the development of bioenergy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据