4.6 Review

Design of Microbial Methane Oxidation Systems for Landfills

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.907562

关键词

Methane oxidation; biofilter; biowindow; biocover; design; consruction; monitoring

向作者/读者索取更多资源

Landfill methane is the largest global source of greenhouse gas emissions from the solid waste sector. Microbial methane oxidation systems (MMOS) are considered a promising technology. This paper reviews the scientific background and provides guidance on layout and design steps for MMOS.
Landfill methane currently represents the largest global source of greenhouse gas emissions from the solid waste sector. Emissions are expected to increase due to increasing waste generation, particularly in countries still landfilling biodegradable wastes. As a complementary measure to gas extraction with subsequent flaring or energy conversion, or for emissions reduction from old landfills or from landfills containing wastes with a low gas potential, microbial methane oxidation systems (MMOS) are considered a promising technology. Numerous studies relating to controlling factors and enhancement of microbial methane oxidation in biocovers, biowindows or biofilters, both in laboratory and in large scale field settings, have been published. The design of optimized MMOS requires thorough understanding of the involved processes, specifically the biological ones and of those related to the transport of gas and water in porous media, and of the impact of material properties and external environmental factors on these processes. Consequently, the selection of materials that are suitable from a biogeochemical and from a geotechnical point of view, meeting the required water and gas transport properties, are key aspects in the design process. This paper reviews the scientific background of the relevant concepts and processes dictating MMOS performance, and provides guidance on layout and design steps, including choice of materials and quality control. Further, a decision tree to support the choice of MMOS is proposed. This paper provides the scientific foundation for upcoming technical guidance documents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据