4.6 Article

Biodecolorization and degradation of textile azo dyes using Lysinibacillus sphaericus MTCC 9523

期刊

FRONTIERS IN ENVIRONMENTAL SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fenvs.2022.990855

关键词

azo dyes; decolorization; biodegradation; non-autochthonous bacteria; Lysinibacillus sphaericus

向作者/读者索取更多资源

This study investigated the decolorization efficiency of selective reactive azo dyes by non-adapted Lysinibacillus sphaericus MTCC 9523 in optimized conditions, with visual color changes and spectroscopic analysis confirming decolorization. HPLC analysis showed differences in retention time between control and treated samples, supporting biodegradation, while GC-MS analysis revealed the chemical identities of metabolites and predicted the metabolic pathways of degradation for each dye. Overall, the use of adapted and non-adapted microbes is a promising, cost-effective and time-saving green strategy for the biodegradation of textile effluent containing azo dyes.
Wastewater discharges by textile industries constitute a major environmental concern as they exert grave human health dangers. Innovative, cost-effective and economical strategy aimed at ameliorating the effect of textile effluent in the environment is highly desirable. Hence, this study investigated the decolorization efficiency of selective reactive azo dyes by textile effluent non-adapted Lysinibacillus sphaericus MTCC 9523 in optimized operational conditions. Visual color changes with 96.30% and 92.71% decolorization for Reactive Yellow F3R (RYF3R) and Joyfix Red RB (JRRB) elucidated by UV-visible spectrophotometric analysis affirmed decolorization of the dyes. Meanwhile, Fourier Transform Infrared (FTIR) Spectroscopy of the metabolites obtained after degradation further revealed the functional groups and loss of peak for azo group indicated the breaking of azo bond. On High-Performance Liquid Chromatography (HPLC) analysis, difference in control dye's retention time compared to treated sample with peaks at 2.413 and 2.895 min for RYF3R and 2.466 min and 1.640 min for Joyfix Red RB supported biodegradation by this organism. The chemical identities of the metabolites revealed after Gas Chromatography-Mass Spectrometry (GC-MS) analysis was used in the prediction of each dye's metabolic pathway of degradation based on their molecular weight and mass-to-charge ratio. They were found to be (2Z)-but-2-ene, 1,3,5-triazine, (3E)-penta-1,3-diene for RYF3R and (methylsulfonyl)benzene, phenol, buta-1,3-diene, 1,3,5-triazine-2,4(1H,3H)-dione, nitrobenzene for JRRB. Overall, the use of adapted and non-adapted microbes is highly promising as an efficient, cost-effective, time-saving and universal green strategy for biodegradation of textile effluent containing azo dyes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据