4.6 Article

Elevated CO2 and Increased N Intensify Competition between Two Invasive Annual Plants in China

期刊

LIFE-BASEL
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/life12101669

关键词

elevated CO2; increased N; common ragweed; redroot pigweed; invasional interference; interspecific competition

资金

  1. National Key Research and Development Program of China [2016YFC1201100, 2017YFC0506200]

向作者/读者索取更多资源

Understanding the interactions between different invasive species is crucial as multiple invaders often co-occur. This study found that common ragweed exhibited superior competitive ability under elevated CO2 and increased N conditions, and environmental change could strengthen its competitiveness.
As multiple invaders often co-occur, understanding the interactions between different invasive species is important. Previous studies have reported on invasional meltdown and neutral and interference relationships between invasive species. However, interspecific interactions may vary with environmental change owing to the different responses of interacting invaders. To better understand the interaction of notorious invasive alien plants under CO2 enrichment and N deposition, the growth characteristics of common ragweed (Ambrosia artemisiifolia) and redroot pigweed (Amaranthus retroflexus) were studied when they were planted in monoculture (4Rag and 4Pig) or mixture (1Rag:3Pig, 2Rag:2Pig, 3Rag:1Pig) under four environmental treatments: elevated CO2, increased N, elevated CO2 + increased N and a control. Increased N positively affected almost all the traits (basal stem diameter, height, shoot biomass, root biomass and total biomass) of common ragweed, except for branch number and root-shoot ratio. But increased N only promoted redroot pigweed's height and basal stem diameter. interspecific competition promoted basal stem diameter and number of branches but decreased root biomass of common ragweed, and the basal stem diameter was significantly higher in 1Rag:3Pig and 2Rag:2Pig compared to the other two treatments. interspecific competition inhibited almost all the characteristics of redroot pigweed. The interaction between elevated CO2 and increased N also increased the biomass characteristics (shoot biomass, root biomass and total biomass) of common ragweed. However, elevated CO2 inhibited the root biomass of redroot pigweed. The results indicated that common ragweed was a superior competitor under conditions of elevated CO2 and increased N. Moreover, environmental change might strengthen the super-invasive plant common ragweed's competitive ability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据