4.6 Article

Application of spectral CT combined with perfusion scan in diagnosis of pancreatic neuroendocrine tumors

期刊

INSIGHTS INTO IMAGING
卷 13, 期 1, 页码 -

出版社

SPRINGER
DOI: 10.1186/s13244-022-01282-9

关键词

Pancreatic neuroendocrine tumors (pNETs); Spectral CT combined with perfusion scan; Imaging diagnosis; Radiation dose

向作者/读者索取更多资源

This study demonstrates that the combination of one-stop spectral CT and perfusion scanning improves the detection rate of pNETs, with relatively low radiation dose.
Background Pancreatic neuroendocrine tumors (pNETs) are heterogeneous tumors from the pancreatic neuroendocrine system, and early diagnosis is important for tumor prognosis and treatment. In this study, we aimed to explore the diagnostic value of spectral CT combined with perfusion scanning in improving the detection rate of pNETs. Methods From December 2018 to December 2020, 58 patients with clinically suspected pNETs were prospectively enrolled in the study for one-stop spectral CT combined with perfusion scanning, 36 patients were confirmed with pNETs by histopathology. An independent cohort of 30 patients with pNETs who underwent routine pancreatic perfusion scanning in our hospital during the same period were retrospectively collected. The image characters of pNETs versus tumor-free pancreatic parenchymal were examined. Results The detection rate of spectral CT combined with perfusion was 83.1-96.2%. CT values of the pNETs lesions under each single energy in the arterial phase were statistically higher than those of the adjacent normal pancreatic parenchyma. IC, WC and NIC, in the arterial phase of pNETs lesion were all statistically higher than those of the adjacent normal pancreatic parenchyma. The perfusion parameters of pNETs including BF, BV and MSI were significantly higher than those in normal parenchyma. The average effective radiation dose during the perfusion combined energy spectrum enhanced scanning process was 17.51 +/- 2.18 mSv. Conclusion The one-stop spectral CT combined with perfusion scan improves the detection of pNETs according to morphological features, perfusion parameters and energy spectrum characters with a relatively small radiation dose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据