4.6 Article

Climate Change Impact on Yield and Water Use of Rice-Wheat Rotation System in the Huang-Huai-Hai Plain, China

期刊

BIOLOGY-BASEL
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/biology11091265

关键词

climate change; APSIM model; crop yield; agriculture water use; CMIP6

类别

资金

  1. Hebei Provincial Science Foundation for Distinguished Young Scholars [D2022205010]
  2. National Natural Science Foundation of China [41901128]
  3. Technology Program of Hebei Academy of Sciences [22102]

向作者/读者索取更多资源

Understanding the impact of climate change on crop production and water consumption is crucial for sustainable agricultural development. This study investigated the effects of temperature, solar radiation, precipitation, and CO2 concentration on crop phenology, yield, and water consumption in a rice-wheat rotation system. The findings revealed that climate change significantly influences the growth process, yield, and water use efficiency of crops.
Simple Summary Quantitatively exploring the impact of climate change on crop production and water consumption (i.e., crop evapotranspiration during crop growth period, ET) is very important to achieve sustainable regional agricultural development. In this study, based on daily downscaled climate data from 22 Global Climate Models (GCMs), we applied the Agricultural Production Systems sIMulator (APSIM) to investigate the possible impact of climate change (e.g., temperature (Temp), solar radiation (Rad), precipitation (Prec) and CO2) on crop phenology, yield and water consumption for the rice (Oryza sativa L.) -wheat (Triticum aestivum L.) rotation. Due to the increase in Temp, the key phenological periods (flowering and maturity) of wheat in the future mainly tend to advance, while the phenological changes of rice show different trends at different sites. Both rice and wheat yields were negatively correlated with Temp, but positively correlated with Rad, Prec, and CO2 concentration ([CO2]). However, crop ET was positively correlated with Rad, but negatively correlated with [CO2], as elevated [CO2] decreased stomatal conductance. Moreover, the water use efficiency (WUE) of rice and wheat was negatively correlated with Temp, but positively correlated with [CO2]. Overall, climate change will have a significant impact on the crop growth process, yield and water consumption. Global climate change has had a significant impact on crop production and agricultural water use. Investigating different future climate scenarios and their possible impacts on crop production and water consumption is critical for proposing effective responses to climate change. In this study, based on daily downscaled climate data from 22 Global Climate Models (GCMs) provided by Coupled Model Intercomparison Project Phase 6 (CMIP6), we applied the well-validated Agricultural Production Systems sIMulator (APSIM) to simulate crop phenology, yield, and water use of the rice-wheat rotation at four representative stations (including Hefei and Shouxian stations in Anhui province and Kunshan and Xuzhou stations in Jiangsu province) across the Huang-Huai-Hai Plain, China during the 2041-2070 period (2050s) under four Shared Socioeconomic Pathways (i.e., SSP126, SSP245, SSP370, and SSP585). The results showed a significant increase in annual mean temperature (Temp) and solar radiation (Rad), and annual total precipitation (Prec) at four investigated stations, except Rad under SSP370. Climate change mainly leads to a consistent advance in wheat phenology, but inconsistent trends in rice phenology across four stations. Moreover, the reproductive growth period (RGP) of wheat was prolonged while that of rice was shorted at three of four stations. Both rice and wheat yields were negatively correlated with Temp, but positively correlated with Rad, Prec, and CO2 concentration ([CO2]). However, crop ET was positively correlated with Rad, but negatively correlated with [CO2], as elevated [CO2] decreased stomatal conductance. Moreover, the water use efficiency (WUE) of rice and wheat was negatively correlated with Temp, but positively correlated with [CO2]. Overall, our study indicated that the change in Temp, Rad, Prec, and [CO2] have different impacts on different crops and at different stations. Therefore, in the impact assessment for climate change, it is necessary to explore and analyze different crops in different regions. Additionally, our study helps to improve understanding of the impacts of climate change on crop production and water consumption and provides data support for the sustainable development of agriculture.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据