4.6 Article

Licochalcone B, a Natural Autophagic Agent for Alleviating Oxidative Stress-Induced Cell Death in Neuronal Cells and Caenorhabditis elegans Models

期刊

PHARMACEUTICALS
卷 15, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/ph15091052

关键词

Licochalcone B; antioxidant; autophagy; apoptosis; reactive oxygen species

资金

  1. Macao Science and Technology Development Fund [0093/2021/A, 001/2020/ALC, 057/2017/A2]
  2. Foshan Medicine Dengfeng Project of China 2019-2021
  3. Sichuan Science and Technology Program [2022YFH0115]

向作者/读者索取更多资源

The study found that Licochalcone B (LCB) has neuroprotective effects against oxidative stress-induced damage in neuronal cells. It reduces cell cytotoxicity and apoptosis, lowers the level of oxidative stress markers, and induces autophagy and signaling pathways to protect against damage.
Autophagy has been implicated in the regulation of neuroinflammation and neurodegenerative disorders. Licochalcone B (LCB), a chalcone from Glycyrrhiza inflata, has been reported to have anti-cancer, anti-oxidation and anti-beta-amyloid fibrillation effects; however, its effect in autophagy remain un-investigated. In the current study, the potential neuro-protective role of LCB in terms of its anti-oxidative, anti-apoptotic, and autophagic properties upon oxidative stress-induced damage in neuronal cells was investigated. With the production of reactive oxygen species (ROS) as a hallmark of neuroinflammation and neurodegeneration, hydrogen peroxide (H2O2) was adopted to stimulate ROS-induced cell apoptosis in PC-12 cells. Our findings revealed that LCB reduced cell cytotoxicity and apoptosis of PC-12 cells upon H2O2-stimulation. Furthermore, LCB increased the level of the apoptosis-associated proteins caspase-3 and cleaved caspase-3 in H2O2-induced cells. LCB effectively attenuated the level of oxidative stress markers such as MDA, SOD, and ROS in H2O2-induced cells. Most importantly, LCB was confirmed to possess its anti-apoptotic effects in H2O2-induced cells through the induction of ATG7-dependent autophagy and the SIRT1/AMPK signaling pathway. As a novel autophagic inducer, LCB increased the level of autophagy-related proteins LC3-II and decreased p62 in both neuronal cells and Caenorhabditis elegans (C. elegans) models. These results suggested that LCB has potential neuroprotective effects on oxidative damage models via multiple protective pharmacological mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据