4.7 Article

A performance comparison between GaInP-on-Si and GaAs-on-Si 3-terminal tandem solar cells

期刊

ISCIENCE
卷 25, 期 9, 页码 -

出版社

CELL PRESS
DOI: 10.1016/j.isci.2022.104950

关键词

-

资金

  1. U.S. Department of Energy (DOE) [DE-AC36-08GO28308]
  2. U.S. Department of Energy Office of Energy Efficiency and Renewable Energy Solar Energy Technologies Office [DE-00034911]
  3. German Federal Ministry for Economic Affairs and Energy [FKZ:03EE1056A]
  4. German State of Lower Saxony

向作者/读者索取更多资源

This study analyzes the performance of two superstrate 3T III-V-on-Si tandem solar cells and demonstrates that both cells exhibit the same efficiency, showing that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.
The pursuit of ever-higher solar cell efficiencies has focused heavily on multijunction technologies. In tandem cells, subcells are typically either contacted via two terminals (2T) or four terminals (4T). Simulations show that the less-common three-terminal (3T) design may be comparable to 4T tandem cells in its compatibility with a range of materials, operating conditions, and methods for subcell integration, yet the 3T design circumvents shading losses of the 4T intermediate conductive layers. This study analyzes the performance of two superstrate 3T III-V-on-Si (III-V//Si) tandem cells: One has slightly greater current contribution from the Si bottom cell (GaInP//Si) and the other has substantially greater current contribution from the GaAs top cell (GaAs//Si). Our results show that both tandem cells exhibit the same efficiency (21.3%), thereby demonstrating that the third terminal allows for flexibility in the selection of the top cell material, similar to the 4T design.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据