4.7 Article

Simple Approach for Synthesizing a Fluorinated Polymer Donor Enables Promoted Efficiency in Polymer Solar Cells

期刊

ACS APPLIED ENERGY MATERIALS
卷 5, 期 11, 页码 14250-14261

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsaem.2c02791

关键词

fluorination; 3-fluorothiophene; polymer donors; photovoltaics; benzotriazole

资金

  1. Guangdong Provincial Key Laboratory of Distributed Energy Systems [2020B1212060075]
  2. Dongguan Science and Technology Commissioner Project [20201800500272]
  3. Natural Science Foundation of Guangdong Province [2018A030313304]
  4. Talent Research Start-up Fund of Guangdong University and Technology [GC300501-146]
  5. Dongguan Social Science and Technology Development Project [20185071401607]

向作者/读者索取更多资源

In this study, a practical method for synthesizing 3-fluorothiophene as pi-bridge units on the polymer backbone was proposed to reduce synthesis steps and lower costs. The introduction of fluorine atoms into the polymer backbone significantly improved the photovoltaic device performance, surpassing traditional methods. In addition, utilizing fluorinated pi-conjugated bridges for photovoltaic device fabrication showed higher efficiency and better performance.
In this contribution, we used a practical method to synthesize 3-fluorothiophene as pi-bridge units on the polymer backbone via constructing 3-fluoro-2-iodothiophene to decrease synthesis steps and lower costs. Fluorine atoms introduced into the polymer backbone can improve polymer planarity, packing, crystallinity, and hole mobility via extensive noncovalent interactions such as F-H, F-Cl, F-S, and F-pi. When compared to the analogue PBZ-Cl without any fluorine substituent on the thiophene unit, our fluorinated polymer J52ClF exhibited red-shifted absorption of roughly 42 nm with a narrower band gap (Egopt) of 1.82 eV, a low-lying highest occupied molecular orbital (HOMO) energy level, and a highly coplanar molecular configuration in the backbone. The optimal device based on J52ClF:IT-4F achieved a desired power conversion efficiency (PCE) of 14.59%, a VOC of 0.93 V, a JSC of 22.67 mA cm-2, a fill factor (FF) of 69.22%, and an Eloss of 0.57 V, all of which were significantly superior to those of PBZ-Cl:IT-4F (PCE = 9.7%). It demonstrated that fluorinating pi-conjugated bridges utilizing 3-fluoro-2-iodothiophene is a practical strategy that deserves greater attention for increasing photovoltaic performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据