4.6 Article

Exploration of two surfaces observed in Weyl semimetal BaMnSb2

期刊

NPJ QUANTUM MATERIALS
卷 7, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41535-022-00494-y

关键词

-

资金

  1. NSF [DMR-1504226]

向作者/读者索取更多资源

In this study, we investigated the surfaces of single crystalline BaMnSb2 and found two different terminations with drastically different morphologies and electronic properties. The reconstructed structures, defect types, and electronic structures of the two terminations were extensively studied. We also observed that the surface termination significantly influenced the surface-projected electronic band structures, and the presence of defects led to electronic phase separations on the surface.
Single crystalline BaMnSb2 is considered as a 3D Weyl semimetal with the 2D electronic structure containing Dirac cones from the Sb sheet. We report experimental investigation of low-temperature cleaved BaMnSb2 surfaces using scanning tunneling microscopy/spectroscopy and low energy electron diffraction. By natural cleavage, we find two terminations: one is Ba (above the orthorhombically distorted Sb sheet) and another Sb2 (at the surface of the Sb/Mn/Sb sandwich layer). Both terminations show the 2 x 1 surface reconstructions, with drastically different morphologies and electronic properties, however. The reconstructed structures, defect types and nature of the electronic structures of the two terminations are extensively studied. The quasiparticle interference (QPI) analysis is conducted at the energy range between -2 V and 2 V, although no interesting states are observed near the Fermi level, the surface-projected electronic band structures strongly depend on the surface termination above 1.6 V. The existence of defects can greatly modify the local density of states to create electronic phase separations on the surface in the order of tens of nm scale. Our observation on the atomic structures of the terminations and the corresponding electronic structures provides critical information towards an understanding of topological properties of BaMnSb2.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据