4.8 Article

Ion pumping synergy with atomic anchoring for dendrite-free Zn anodes

期刊

ENERGY STORAGE MATERIALS
卷 51, 期 -, 页码 610-619

出版社

ELSEVIER
DOI: 10.1016/j.ensm.2022.07.010

关键词

Zinc ion batteries; Ion pumping; Atomic anchoring; Dendrite-free Zn anode; In-situ reaction

资金

  1. National Natural Science Foundation of China [52172159]
  2. Provincial Key R & D Program of Zhejiang Prov ince [2021C01030]
  3. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering [2021SZ-TD006]

向作者/读者索取更多资源

Despite the high theoretical capacity, low cost, and intrinsic safety, the practical application of aqueous Zn-ion batteries has been limited by the dendrite growth and side reactions of Zn anode. This study successfully enhanced the uniform deposition of Zn nucleation and inhibited dendrite growth by modifying the Zn anode with TCNQ. The TCNQ@Zn anode exhibited remarkable cycling stability at different current densities.
The practical application of aqueous Zn-ion batteries (AZIBs) has been limited by the notorious dendrite growth and side reactions of Zn anode, despite their high theoretical capacity, low cost, and intrinsic safety in large-scale energy storage. Herein, the tetracyanoquinodimethane anions (TCNQ(2-)) modified Zn anode (TCNQ@Zn) is fabricated via in-situ interfacial etching of Zn by TCNQ, which induces more exposure of Zn (101) planes. Benefitting from the abundant cyano group of TCNQ(2-), the TCNQ(2-)can serve as an ion pump to continuously pump Zn2+ in electrolyte for uniform Zn nucleation deposition on the exposed (101) surface. Simultaneously, owing to the significantly higher migration barrier on TCNQ(2-)modified Zn (101) than (002), the 2D diffusion on the Zn (101) can be effectively inhibited, inducing 3D diffusion on Zn (002) to form the ordered (002) deposition orientation. These ordered Zn (002) textures significantly restrain the Zn dendrite formation and passivation reaction. Due to the synergistic effects of surficial ion pumping and atomic anchoring, the TCNQ@Zn anode exhibits remarkable cycling stability over 2000 h at different current densities (1, 5, and 10 mA cm(-2)). This work provides new theoretical guidance for highly stable reversible Zn metal anodes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据