4.7 Article

CFD Aided Ship Design and Helicopter Operation

期刊

出版社

MDPI
DOI: 10.3390/jmse10091304

关键词

ship airwakes; CFD; Ship-Helicopter Operational Limits; flight simulation

资金

  1. Government of Canada

向作者/读者索取更多资源

This study presents a Canadian in-house ship airwake simulation capability combining various testing methods and tools. It discusses the challenges, current capabilities, and limitations of the approach, as well as the gaps and barriers in industry adoption.
In support of Canadian industrial and defence ship design and offshore helicopter operations, a series of Ship-Helicopter Operational Limits Analysis and Simulation (SHOLAS) projects are being conducted at the National Research Council Canada (NRC) in collaboration with Defence Research and Development Canada (DRDC). This study presents a brief overview of a Canadian in-house ship airwake simulation capability combining in-house high-fidelity wind-tunnel tests, full-scale sea trials, high-order computational fluid dynamics (CFD) tools, and realistic engineering-oriented flight simulators. This paper reports challenges and lessons learned during the course of the study, discusses the current capabilities and limitations of the CFD tools and the infrastructure required, and evaluates the gaps and barriers in industry adoption by focusing on how they could be overcome based on our current practice. After validating the CFD results of an updated version of a simplified frigate shape (SFS2) and the real-world Canadian Patrol Frigate (CPF), which are in reasonable agreement with the available in-house wind-tunnel and sea-trial data, the developed approach was recently applied to the design of an undisclosed Canadian ship. Among other applications, CFD airwake results were used with confidence as input to produce representative airwake features in industrial high-fidelity piloted flight simulators.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据