4.7 Article

Graphene/PVDF flat-sheet membrane for the treatment of RO brine from coal seam gas produced water by air gap membrane distillation

期刊

JOURNAL OF MEMBRANE SCIENCE
卷 513, 期 -, 页码 74-84

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.memsci.2016.04.014

关键词

Graphene/PVDF membrane; CSG produced water; RO brine; Air gap membrane distillation; Phase inversion

资金

  1. Industrial Facilities AMP
  2. Infrastructure Research Program - Ministry of Land, Infrastructure and Transport of Korean Government [15IFIP-B065893-03]
  3. UTS Chancellor's Postdoctoral Research Fellowship
  4. ARC Future Fellowship [FT140101208]
  5. UTS FEIT Seed Fund

向作者/读者索取更多资源

Brine management of coal seam gas (CSG) produced water is a significant concern for the sustainable production of CSG in Australia. Membrane distillation (MD) has shown the potential to further reduce the volume of CSG reverse osmosis (RO) brine. However, despite its potential, the lack of appropriate MD membranes limits its industrial use. Therefore, this study was aimed on the fabrication of a robust membrane for the treatment of real RO brine from CSG produced water via an air gap MD (AGMD) process. Here, graphene/polyvinylidene fluoride (G/PVDF) membranes at various graphene loadings 0.1-2.0 wt% w.r.t. to PVDF) were prepared through a phase inversion method. Surface characterization revealed that all G/PVDF membranes exhibited favorable membrane properties having high porosity (> 78%), suitable mean pore size (< 0.11 mu m), and high liquid entry pressure (> 3.66 bar). AGMD test results (feed inlet: 60.0 +/- 1.5 degrees C; coolant inlet: 20.0 +/- 1.5 degrees C) for 24 h operation indicated a high water vapor flux and salt rejection of 20.5 L/m(2)h and 99.99%, respectively for the optimal graphene loading of 0.5 wt%, i.e., G/PVDF-0.5 membrane (compared to 11.6 L/m(2)h and 99.96% for neat PVDF membrane). Long-term AGMD operation of 10 days further revealed the robustness of G/PVDF membrane with superior performance compared to commercial PVDF membrane (85.3% final normalized flux/99.99% salt rejection against 51.4%/99.95% for commercial membrane). Incorporation of graphene has resulted to improved wetting resistance and more robust membrane that has the potential for the treatment of RO brine from CSG produced water via AGMD. (C) 2016 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据