4.6 Article

Comparative Reactive Blue 4 Dye Removal by Lemon Peel Bead Doping with Iron(III) Oxide-Hydroxide and Zinc Oxide

期刊

ACS OMEGA
卷 -, 期 -, 页码 -

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsomega.2c05956

关键词

-

资金

  1. Office of the Higher Education Commission
  2. Thailand Research Fund grant [MRG6080114]
  3. Coordinating Center for Thai Government Science and Technology Scholarship Students (CSTS)
  4. National Science and Technology Development Agency (NSTDA) Fund grant [SCHNR2016-122]
  5. Research and Technology Transfer Affairs of Khon Kaen University

向作者/读者索取更多资源

Lemon peel beads-doped iron(III) oxide-hydroxide (LBF) and lemon peel beads-doped zinc oxide (LBZ) were synthesized and characterized for their effectiveness in removing reactive blue 4 (RB4) dye. LBF showed higher removal efficiency compared to LBZ, making it a potential adsorbent for industrial applications.
The increasing concern of dye contamination in wastewater results in the toxicity of aquatic life and water quality, so wastewater treatment is required to treat the low water quality standard for safety purposes. Lemon peel beads-doped iron(III) oxide-hydroxide (LBF) and lemon peel beads-doped zinc oxide (LBZ) were synthesized and characterized to investigate their crystalline structure, surface morphology, chemical compositions, chemical functional groups, and potentials by X-ray diffraction, field emission scanning electron microscopy and focused ion beam, energy dispersive X-ray spectroscopy, Fourier transform infrared, and zetasizer techniques. Their effects of dose, contact time, temperature, pH, and concentration for reactive blue 4 (RB4) dye removal efficiencies were investigated by batch experiments, and their adsorption isotherms, kinetics, and desorption experiments were also studied. LBF and LBZ demonstrated semicrystalline structures, and their surface morphologies had a spherical shape with coarse surfaces. Five main elements of carbon (C), oxygen (O), calcium (Ca), chlorine (Cl), and sodium (Na) and six main function groups of O-H, C N, C=C, C-OH, C-O-C, and C-H were detected in both materials. The results of xi potential demonstrated that both LBF and LBZ had negative charges on the surface at all pH values, and their surfaces increased more of the negative charge with the addition of the pH value from 2-12. For batch tests, the RB4 dye removal efficiencies of LBF and LBZ were 83.55 and 66.64%, respectively, so LBF demonstrated a higher RB4 dye removal efficiency than LBZ. As a result, the addition of iron(III) oxide-hydroxide helped in improving the material efficiency more than zinc oxide. In addition, both LBF and LBZ could be reused in more than five cycles for RB4 dye removal of more than 41%. The Freundlich model was a good explanation for their adsorption patterns relating to physiochemical adsorption, and a pseudo-second-order kinetic model was a well-fitted model for explaining their adsorption mechanism correlating to the chemisorption process with heterogeneous adsorption. Therefore, LBF was a potential adsorbent to further apply for RB4 dye removal in industrial applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据