4.7 Article

Metabolomic Profiling in Combination with Data Association Analysis Provide Insights about Potential Metabolic Regulation Networks among Non-Volatile and Volatile Metabolites in Camellia sinensis cv Baijiguan

期刊

PLANTS-BASEL
卷 11, 期 19, 页码 -

出版社

MDPI
DOI: 10.3390/plants11192557

关键词

Camellia sinensis; albino tea; half-sibs; catechins; amino acids; MVA pathway; MEP pathway; phenylpropanoid pathway; fatty acid-derivative pathway; correlation analysis

资金

  1. Ministry of Agriculture and Rural Affairs of P. R. China [CARS-19, XTCXGC2021004]
  2. National Science Foundation of China [31870803]

向作者/读者索取更多资源

This study investigates the metabolic crosstalk between non-volatile and volatile metabolites in tea. The results suggest that the synthesis of these metabolites is potentially connected through shared intermediates, and multiple metabolic regulation modes exist. The study provides important knowledge for rational tea germplasm improvements.
The non-volatile and volatile metabolites in tea confer the taste and odor characteristics of tea fusion, as well as shape the chemical base for tea quality. To date, it remains largely elusive whether there are metabolic crosstalks among non-volatile metabolites and volatile metabolites in the tea tree. Here, we generated an F1 half-sib population by using an albino cultivar of Camellia sinensis cv Baijiguan as the maternal parent, and then we quantified the non-volatile metabolites and volatile metabolites from individual half-sibs. We found that the EGC and EGCG contents of the albino half-sibs were significantly lower than those of the green half-sibs, while no significant differences were observed in total amino acids, caffeine, and other catechin types between these two groups. The phenylpropanoid pathway and the MEP pathway are the dominant routes for volatile synthesis in fresh tea leaves, followed by the MVA pathway and the fatty acid-derivative pathway. The total volatile contents derived from individual pathways showed large variations among half-sibs, there were no significant differences between the albino half-sibs and the green half-sibs. We performed a comprehensive correlation analysis, including correlations among non-volatile metabolites, between volatile synthesis pathways and non-volatile metabolites, and among the volatiles derived from same synthesis pathway, and we identified several significant positive or negative correlations. Our data suggest that the synthesis of non-volatile and volatile metabolites is potentially connected through shared intermediates; feedback inhibition, activation, or competition for common intermediates among branched pathways may co-exist; and cross-pathway activation or inhibition, as well as metabolome channeling, were also implicated. These multiple metabolic regulation modes could provide metabolic plasticity to direct carbon flux and lead to diverse metabolome among Baijiguan half-sibs. This study provides an essential knowledge base for rational tea germplasm improvements.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据