4.7 Article

The Barley Heavy Metal Associated Isoprenylated Plant Protein HvFP1 Is Involved in a Crosstalk between the Leaf Development and Abscisic Acid-Related Drought Stress Responses

期刊

PLANTS-BASEL
卷 11, 期 21, 页码 -

出版社

MDPI
DOI: 10.3390/plants11212851

关键词

HIPPs; drought; senescence; ABA; crosstalk

资金

  1. European Social Fund (ESF), Agripoly-Project [ZS/2016/08/80644]
  2. Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) [400681449/GRK2498]

向作者/读者索取更多资源

This study identified heavy metal associated isoprenylated plant proteins (HIPPs) that play a regulatory role in drought stress, ABA signaling, and leaf senescence in plants. The results suggest that these proteins are involved in a crosstalk between stress responses and growth control pathways.
The heavy metal associated isoprenylated plant proteins (HIPPs) are characterized by at least one heavy metal associated (HMA) domain and a C-terminal isoprenylation motif. Hordeum vulgare farnesylated protein 1 (HvFP1), a barley HIPP, is upregulated during drought stress, in response to abscisic acid (ABA) and during leaf senescence. To investigate the role of HvFP1, two independent gain-of-function lines were generated. In a physiological level, the overexpression of HvFP1 results in the delay of normal leaf senescence, but not in the delay of rapid, drought-induced leaf senescence. In addition, the overexpression of HvFP1 suppresses the induction of the ABA-related genes during drought and senescence, e.g., HvNCED, HvS40, HvDhn1. Even though HvFP1 is induced during drought, senescence and the ABA treatment, its overexpression suppresses the ABA regulated genes. This indicates that HvFP1 is acting in a negative feedback loop connected to the ABA signaling. The genome-wide transcriptomic analysis via RNA sequencing revealed that the gain-of-function of HvFP1 positively alters the expression of the genes related to leaf development, photomorphogenesis, photosynthesis and chlorophyll biosynthesis. Interestingly, many of those genes encode proteins with zinc binding domains, implying that HvFP1 may act as zinc supplier via its HMA domain. The results show that HvFP1 is involved in a crosstalk between stress responses and growth control pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据