4.5 Article

Epileptic Seizure Detection Based on Variational Mode Decomposition and Deep Forest Using EEG Signals

期刊

BRAIN SCIENCES
卷 12, 期 10, 页码 -

出版社

MDPI
DOI: 10.3390/brainsci12101275

关键词

electroencephalography; seizure detection; variational modal decomposition; log-Euclidean covariance matrix; deep forest

资金

  1. National Natural Science Foundation of China [62172253, 61972226, 62172254, 61902215]

向作者/读者索取更多资源

This paper presents a seizure detection algorithm based on VMD and DF model, which can effectively improve the accuracy of automatic identification of epileptic seizures.
Electroencephalography (EEG) records the electrical activity of the brain, which is an important tool for the automatic detection of epileptic seizures. It is certainly a very heavy burden to only recognize EEG epilepsy manually, so the method of computer-assisted treatment is of great importance. This paper presents a seizure detection algorithm based on variational modal decomposition (VMD) and a deep forest (DF) model. Variational modal decomposition is performed on EEG recordings, and the first three variational modal functions (VMFs) are selected to construct the time-frequency distribution of the EEG signals. Then, the log-Euclidean covariance matrix (LECM) is computed to represent the EEG properties and form EEG features. The deep forest model is applied to complete the EEG signal classification, which is a non-neural network deep model with a cascade structure that performs feature learning through the forest. In addition, to improve the classification accuracy, postprocessing techniques are performed to generate the discriminant results by moving average filtering and adaptive collar expansion. The algorithm was evaluated on the Bonn EEG dataset and the Freiburg long-term EEG dataset, and the former achieved a sensitivity and specificity of 99.32% and 99.31%, respectively. The mean sensitivity and specificity of this method for the 21 patients in the Freiburg dataset were 95.2% and 98.56%, respectively, with a false detection rate of 0.36/h. These results demonstrate the superior performance advantage of our algorithm and indicate its great research potential in epilepsy detection.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据