4.6 Article

Study on the slope dynamic stability considering the progressive failure of the slip surface under earthquake

期刊

FRONTIERS IN EARTH SCIENCE
卷 10, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/feart.2022.981503

关键词

slope engineering; earthquake; progressive failure; strain-softening; vibration deterioration

资金

  1. National Key Research and Development Funding Projects of China
  2. Yunnan Innovation Team
  3. [2017YFC0805303]
  4. [202105AE160023]

向作者/读者索取更多资源

This article proposes a new method for calculating the stability of seismic slopes. The method takes into account the strength parameter characteristics of rock-soil mass under seismic dynamic load and combines the effects of vibration disturbance and progressive failure, which can more accurately evaluate the stability of slopes.
The strength of a rock-soil mass shows complex and obvious weakening characteristics under seismic dynamic load. The previous stability analysis methods of a seismic slope do not fully depict the attenuation law of geotechnical materials and cannot truly reflect the stable state of a slope under earthquake action. Based on the theoretical analysis of the progressive failure mechanism and the evolution law of a seismic slope, the adverse effect of progressive failure on slope stability is clarified. According to the progressive failure process of a slope under dynamic load, the strain-softening model and vibration deterioration model are introduced to represent the attenuation law of rock strength parameters, and a calculation method of seismic slope stability coupled with vibration disturbance and progressive failure is proposed. The method considers the strength parameter characteristics of a rock-soil mass in different stages and is combined with the vector sum method to obtain the time-history curve of the slope safety factor under earthquake action, which makes the evaluation result of slope stability more accurate and reliable. The numerical examples show that this method can effectively reflect the dynamic stability of seismic slopes, and solve the problem that the traditional calculation methods are difficult to characterize the strength attenuation characteristics of rock and soil mass. If these characteristics are not considered, the calculation results will be unsafe.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据