4.7 Article

Citizen science and machine learning: Interdisciplinary approach to non-invasively monitoring a northern marine ecosystem

期刊

FRONTIERS IN MARINE SCIENCE
卷 9, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fmars.2022.961095

关键词

citizen science; machine learning; Cnidara; Ctenophora; conservation; deep learning; beluga whale (Delphinapterus leucas); wildlife monitoring

资金

  1. Assiniboine Park Conservancy
  2. RBC Environmental Donations Fund
  3. Churchill Northern Studies Centre's Northern Research Fund
  4. Calm Air, and Mitacs Accelerate program

向作者/读者索取更多资源

Successful conservation efforts often require novel tactics to achieve desired goals. One effective strategy is to develop interdisciplinary, collaborative approaches to ensure science-based, scalable, and goal-oriented initiatives. By bringing together diverse partners, technologies, and global resources, organizations can bridge gaps and enhance monitoring efforts in areas where they are most needed.
Successful conservation efforts often require novel tactics to achieve the desired goals of protecting species and habitats. One such tactic is to develop an interdisciplinary, collaborative approach to ensure that conservation initiatives are science-based, scalable, and goal-oriented. This approach may be particularly beneficial to wildlife monitoring, as there is often a mismatch between where monitoring is required and where resources are available. We can bridge that gap by bringing together diverse partners, technologies, and global resources to expand monitoring efforts and use tools where they are needed most. Here, we describe a successful interdisciplinary, collaborative approach to long-term monitoring of beluga whales (Delphinapterus leucas) and their marine ecosystem. Our approach includes extracting images from video data collected through partnerships with other organizations who live-stream educational nature content worldwide. This video has resulted in an average of 96,000 underwater images annually. However, due to the frame extraction process, many images show only water. We have therefore incorporated an automated data filtering step using machine learning models to identify frames that include beluga, which filtered out an annual average of 67.9% of frames labelled as empty (no beluga) with a classification accuracy of 97%. The final image datasets were then classified by citizen scientists on the Beluga Bits project on Zooniverse (https://www.zooniverse.org). Since 2016, more than 20,000 registered users have provided nearly 5 million classifications on our Zooniverse workflows. Classified images are then used in various researcher-led projects. The benefits of this approach have been multifold. The combination of machine learning tools followed by citizen science participation has increased our analysis capabilities and the utilization of hundreds of hours of video collected each year. Our successes to date include the photo-documentation of a previously tagged beluga and of the common northern comb jellyfish (Bolinopsis infundibulum), an unreported species in Hudson Bay. Given the success of this program, we recommend other conservation initiatives adopt an interdisciplinary, collaborative approach to increase the success of their monitoring programs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据