4.7 Review

Progress in research and technological advancements of thermal energy storage systems for concentrated solar power

期刊

JOURNAL OF ENERGY STORAGE
卷 55, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.est.2022.105860

关键词

Thermal energy storage; Concentrated solar power; Molten salt; Thermochemical energy storage

资金

  1. Qatar National Library (QNL)

向作者/读者索取更多资源

There is a global shift towards more sustainable production and consumption systems, leading to an increasing share of renewables in the energy market, with solar PV and wind power accounting for a significant portion. Concentrated solar power (CSP) technologies are seen as promising for future electricity generation, but the integration of efficient thermal energy storage systems is crucial due to the intermittent nature of solar energy.
A global transition towards more sustainable production and consumption systems has led to an increasing share of renewables in the energy market. Renewables, majorly solar PV and wind power are accounted for around 10 % of the global power production in 2020. In this context, concentrated solar power (CSP) technologies are seen to be one of the most promising ways to generate electric power in coming decades. However, because of the intermittent nature of solar energy, one of the key factors that determine the development of CSP technology is the integration of efficient and cost-effective thermal energy storage (TES) systems. TES system not only plays a crucial role in bridging the gap between energy supply and demand but also increases the performance and reliability of energy systems and plays a crucial role in energy conservation. Though there have been many reviews on TES system, however the existing literature is either over 5 years old or focus on thermal storage materials for low temperature applications. To bridge this gap, this work presents a comprehensive review on the actual state of all major components of cutting-edge TES technologies for CSP application and condenses all the available information and categorizes them considering the main functional parts and remarking the current research progress in each part as well as the future challenging issues. It intends to understand and explain the foundations of the innovative concepts, future research directions and strategies developed over the past 10 years to tune the engineering and thermal sciences of TES systems. Insight into classes of TES storage materials with details on geometrical configurations, design parameters, physical properties, operational issues, cost, technol-ogy readiness level, suitability to CSP application and comparative assessment of various TES systems is provided.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据