4.6 Article Proceedings Paper

Evaluating the performance of a hybrid cooling and heating power system using Carbon dioxide energy storage

期刊

ENERGY REPORTS
卷 8, 期 -, 页码 935-944

出版社

ELSEVIER
DOI: 10.1016/j.egyr.2022.10.026

关键词

Combined cooling; Heating and power; Hybrid CCPH; Trans-critical brayton cycle

向作者/读者索取更多资源

Energy storage can improve the imbalance in solar to electric power ratios in a Combined Heating, cooling and power system. However, it also adds complexity to the operational efficiency of the device. This paper presents a unique tri-generation method based on the Trans-critical Brayton cycle and carbon dioxide energy storage, and optimizes its operations.
Energy storing could correct an imbalance in the solar to electric power ratios among a Combined Heating, cooling and power system and its consumers, improving energy performance dramatically. Energy storage, on the other hand, adds to the complexities of the device's operational efficiency. While assessing the device's CO2 emissions in the operational state, the analysis comprises complete thermodynamics and thermo-economic evaluation. The effect of designing element modification on application functionality was examined next by varying the designed characteristics. Lastly, the proposed hybrid CCHP system is optimized for three objective operations: normalized exergy performance, CO2 emissions, and energy effectiveness. This paper presents a unique tri-generation method depending on the Trans-critical Brayton cycle and carbon dioxide energy storage (CO2ES). The stored capacity has a minor impact on the framework's operating and cooling ranges, but the development in pressure change through the first throttle valve and temperature conditions broadens them. The capacity for heating and cooling rises in lockstep with stored pressures and falls in lock-step with differential pressure via the first throttle pressure regulator and ambient temperature. Moreover, the computational power is adequate for power system management. The proposed approach could also be used to optimize the functioning of a CCHP framework while taking into account demand-side responses.(c) 2022 Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据