4.7 Article

Understanding the mechanisms of adhesive wear for heterogeneous materials through atomistic simulations

期刊

EXTREME MECHANICS LETTERS
卷 57, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.eml.2022.101913

关键词

Adhesive wear; Molecular dynamics simulation; High-entropy composite; Homogenization

资金

  1. Swiss National Science Foun-dation
  2. [197152]

向作者/读者索取更多资源

When two rough surfaces slide against each other, either ductile behavior or brittle behavior can be observed. A critical length scale has been identified to control the transition between these two behaviors. This study extends the work to simple heterogeneous materials with random fluctuations, and finds that local variations influence the global behavior. Local fluctuations make the heterogeneous material weaker but increase the overall ductility.
When two rough surfaces slide against each other, two main behaviors can be observed at the asperity level: A ductile behavior where the asperities tend to smooth out or a brittle behavior where the asperities detach and form debris. Recently, a critical length scale controlling the transition between both behaviors was identified. Its formulation depends only on material properties and a geometrical factor (of the order of unity). This finding was achieved thanks to molecular dynamics (MD) simulations with hardness-tunable interatomic potentials. However, the materials studied so far have been homogeneous. Here, the work is extended to a class of simple heterogeneous materials with random fluctuations of their properties. A comparative study of the heterogeneous materials against an equivalent homogeneous material is conducted to study the influence of the local variations on the global behavior. It is found that the critical junction size formula works well for hard materials up until a certain ductility threshold after which a third behavior, mixing shear localization and mode II crack opening, appears. There is a transition zone, larger for the heterogeneous material, from the ductile to the brittle behaviors due to local fluctuations and non-deterministic nature of finite temperature atomistic simulations. Local fluctuations render the heterogeneous material weaker than the equivalent homogeneous material and thus, following the critical junction size formula, should lower the probability of forming debris. While this effect can be observed in the single asperity simulations, its magnitude is lower than expected, hinting at the dichotomic effect of local variations: while they increase the overall ductility, they also create particularly brittle areas prone to crack nucleation.(c) 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据