4.6 Article

Distribution of Core Root Microbiota of Tibetan Hulless Barley along an Altitudinal and Geographical Gradient in the Tibetan Plateau

期刊

MICROORGANISMS
卷 10, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/microorganisms10091737

关键词

bacterial community; elevational distribution; fungal community; microbial diversity; metabarcoding

资金

  1. National Natural Science Foundation of China [31860473]

向作者/读者索取更多资源

The bacterial and fungal communities associated with hull-less barley on the Tibetan Plateau were explored, revealing the impact of altitude and soil properties on their diversity. Lower elevations were found to provide a conducive environment for the survival and maintenance of hull-less barley-associated microbiota.
The Tibetan Plateau is regarded as the third pole of the earth and is one of the least explored places on the planet. Tibetan hull-less barley (Hordeum vulgare L. var. nudum) is the only cereal crop grown widely in the Tibetan Plateau as a staple food. Extensive and long-term cropping of barley may influence the soil's chemical and biological properties, including microbial communities. However, microbiota associated with hull-less barley is largely unexplored. This study aimed to reveal the composition and diversity of bacterial and fungal communities associated with the hull-less barley at different elevations in the Tibetan Plateau. The core bacterial and fungal taxa of Tibetan hull-less barley were identified, with Bacillaceae, Blastocatellaceae, Comamonadaceae, Gemmatimonadaceae, Planococcaceae, Pyrinomonadaceae, Sphingomonadaceae, and Nitrospiraceae being the most abundant bacterial taxa and Ceratobasidiaceae, Chaetomiaceae, Cladosporiaceae, Didymellaceae, Entolomataceae, Microascaceae, Mortierellaceae, and Nectriaceae being the most abundant fungal taxa (relative abundance > 1%). Both bacterial and fungal diversities of hull-less barley were affected by altitude and soil properties such as total carbon, total nitrogen, and available phosphorus and potassium. Both bacterial and fungal diversities showed a significant negative correlation with altitude, indicating that the lower elevations provide a conducive environment for the survival and maintenance of hull-less barley-associated microbiota. Our results also suggest that the high altitude-specific microbial taxa may play an important role in the adaptation of the hull-less barley to the earth's third pole.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据