4.6 Article

A High Daptomycin Dose Is Associated with Better Bacterial Clearance in Infections Caused by Vancomycin-Resistant Enterococcus faecium Regardless of Daptomycin Minimum Inhibitory Concentration in a Rat Infective Endocarditis Model

期刊

MICROBIOLOGY SPECTRUM
卷 -, 期 -, 页码 -

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/spectrum.02551-22

关键词

vancomycin resistant enterococcus; daptomycin; infective endocarditis; pharmacokinetics; animal model

资金

  1. Ministry of Science and Technology, Taiwan [110-2628-B-002-059, 110-2326-B-002-003-MY3, 111-2314-B-002-209]
  2. Ministry of Health and Welfare, Taiwan [MOHW110-TDU-B-211-124002]
  3. National Taiwan University Hospital [NTUH. 110-S4901]
  4. Far Eastern Memorial Hospital
  5. National Taiwan University Hospital Joint Research Program [109-FTN09, 110-FTN10, 111-FTN0007]

向作者/读者索取更多资源

A high daptomycin dose has been suggested for treating vancomycin-resistant Enterococcus faecium (VREf) infections. However, even a 12 mg/kg daptomycin dose might be insufficient for treating VREf with high daptomycin minimum inhibitory concentrations (MICs). Using a rat IE model with pharmacokinetic analysis, the treatment response of VREf IE was found to be daptomycin dose-dependent, presented as Cmax/MIC or as the 24 h area under the concentration-time curve (AUC(0-24))/MIC. Daptomycin 90 mg/kg s.c. significantly reduced the bacterial load against DSE and DNSE, but eradication could not be achieved with 90 mg/kg daptomycin against DNSE.
A high daptomycin dose has been suggested for treating vancomycin-resistant Enterococcus faecium (VREf) infections. However, even a 12 mg/kg daptomycin dose might be insufficient for treating VREf with high daptomycin minimum inhibitory concentrations (MICs). Additionally, animal pharmacodynamic and infection models to confirm the efficacy of 12 mg/kg daptomycin are lacking. Male Wistar rats were used for pharmacokinetic profiling and for the development of an infective endocarditis (IE) model. Daptomycin-susceptible dose-dependent VREf (DSE) (MIC of 0.5 mg/L) and daptomycin nonsusceptible VREf (DNSE) (MIC of 8 mg/L) were used for the IE models. The bacterial load of vegetation was the primary outcome and was evaluated after 3 days of daptomycin treatment. Daptomycin administered subcutaneously (s.c.) at 45 and 90 mg/kg, which corresponded to maximum serum concentrations (Cmax) of 122.6 mg/L and 178.5 mg/L, respectively, was equivalent to doses of 8 mg/kg and 12 mg/kg, respectively, in humans. The Cmax/MIC value was correlated with the bacterial load of vegetation after treatment (r = -0.88, P < 0.001). The 90 mg/kg s.c. group showed a significantly lower bacterial load of vegetation (log(10) CFU/g) than the 45 mg/kg s.c. group against DSE (0 versus 4.75, P < 0.001) and DNSE (5.12 versus 6.98, P = 0.002). The 90 mg/kg s.c. group did not sterilize the vegetation against DNSE. Although the human equivalent dose of 12 mg/kg daptomycin was more effective than the smaller dose in reducing the bacterial load in DSE and DNSE IE, the dose could not sterilize the vegetation during a DNSE treatment. Further treatment strategies by which to manage severe VREf infections, especially at high daptomycin MICs, are urgently needed. IMPORTANCE Using a rat IE model with pharmacokinetic analysis, the treatment response of VREf IE was found to be daptomycin dose-dependent, presented as Cmax/MIC or as the 24 h area under the concentration-time curve (AUC(0-24))/MIC. Daptomycin 90 mg/kg s.c. significantly reduced the bacterial load against DSE and DNSE. It also showed significant activity against DSE and DNSE, compared to 45 mg/kg s.c. Although daptomycin 90 mg/kg can eradicate the bacterial load after 3 days of treatment against DSE, eradication cannot be achieved with 90 mg/kg daptomycin against DNSE.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据