4.7 Article

Antitumor Potential of Withanolide Glycosides from Ashwagandha (Withania somnifera) on Apoptosis of Human Hepatocellular Carcinoma Cells and Tube Formation in Human Umbilical Vein Endothelial Cells

期刊

ANTIOXIDANTS
卷 11, 期 9, 页码 -

出版社

MDPI
DOI: 10.3390/antiox11091761

关键词

Withania somnifera; withanolide glycosides; hepatocellular carcinoma; HepG2 cells; apoptosis; angiogenesis

资金

  1. National Research Foundation of Korea (NRF) - Korean government [2019R1A5A2027340, 2021R1A2C2007937]
  2. Korea Institute of Science and Technology intramural research grant [2E31881]
  3. National Research Foundation of Korea [2021R1A2C2007937] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

This study investigated the cytotoxicity of Withania somnifera against human hepatocellular carcinoma (HCC) cells and identified potential antitumoral withanolide glycosides. The study also elucidated the molecular mechanisms of these bioactive compounds and found that they induced apoptosis and inhibited angiogenesis in HCC cells.
Hepatocellular carcinoma (HCC) is the fastest-growing tumor capable of spreading to other organs via blood vessels formed by endothelial cells. Apoptosis and angiogenesis-targeting therapies are attractive for cancer treatment. In this study, we aimed to study the in vitro cytotoxicity of Withania somnifera against human HCC (HepG2) cells, identify potential antitumoral withanolide glycosides from the active fraction, and elucidate cytotoxic molecular mechanisms of identified bioactive compounds. W. somnifera (Solanaceae), well-known as 'ashwagandha', is an Ayurvedic medicinal plant used to promote health and longevity, and the MeOH extract of W. somnifera root exhibited cytotoxicity against HepG2 cells during initial screening. Bioactivity-guided fractionation of the MeOH extract and subsequent phytochemical investigation of the active n-BuOH-soluble fraction resulted in the isolation of five withanolide glycosides (1-5), including one new metabolite, withanoside XIII (1), aided by liquid chromatography-mass spectrometry-based analysis. The new compound structure was determined by 1D and 2D nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectroscopy, electronic circular dichroism, and enzymatic hydrolysis. In addition, withanoside XIIIa (1a) was identified as the new aglycone (1a) of 1. Isolated withanolide glycosides 1-5 and la were cytotoxic toward HepG2 cells; withagenin A diglucoside (WAD) (3) exhibited the most potent cytotoxicity against HepG2 cells, with cell viability less than 50% at 100 mu M. WAD cytotoxicity was mediated by both extrinsic and intrinsic apoptosis pathways. Treatment with WAD increased protein expression levels of cleaved caspase-8, cleaved caspase-9, cleaved caspase-3, Bcl-2-associated X protein (Bax), and cleaved poly(ADP-ribose) polymerase (cleaved PARP) but decreased expression levels of B-cell lymphoma 2 (Bcl-2). Moreover, WAD inhibited tubular structure formation in human umbilical vein endothelial cells (HUVECs) by inhibiting the protein expression of vascular endothelial growth factor receptor 2 and its downstream pathways, including extracellular signal-regulated kinase (ERK), phosphoinositide 3-kinase (PI3K), Akt, and mammalian target of rapamycin (mTOR). These effects were also enhanced by co-treatment with ERK and PI3K inhibitors. Overall, these results indicate that WAD (3) induced HepG2 apoptosis and inhibited HUVEC tube formation, suggesting its potential application in treating liver cancers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据