4.8 Article

Nonlinear coarse-graining models for 3D printed multi-material biomimetic composites

期刊

ADDITIVE MANUFACTURING
卷 58, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2022.103062

关键词

Multi -material; 3D printing; Bitmap; Voxel-based; Bioinspired; Biomimetic Material; Coarse -grained model

资金

  1. Idea Generator (NWA-IDG) research program [NWA.1228.192.206, NWA.1228.192.228]

向作者/读者索取更多资源

This paper presents a nonlinear coarse-graining approach to predict the mechanical behavior of biomimetic composites using foam-based constitutive equations. The proposed method has been validated and applied successfully to design advanced architected materials.
Bio-inspired composites are a great promise for mimicking the extraordinary and highly efficient properties of natural materials. Recent developments in voxel-by-voxel 3D printing have enabled extreme levels of control over the material deposition, yielding complex micro-architected materials. However, design complexity, very large degrees of freedom, and limited computational resources make it a formidable challenge to find the optimal distribution of both hard and soft phases. To address this, a nonlinear coarse-graining approach is developed, where foam-based constitutive equations are used to predict the elastoplastic mechanical behavior of biomimetic composites. The proposed approach is validated by comparing coarse-grained finite element predictions against full-field strain distributions measured using digital image correlation. To evaluate the degree of coarse-graining on model accuracy, pre-notched specimens decorated with a binarized version of a renowned painting were modeled. Subsequently, coarse-graining is used to predict the fracture behavior of bio-inspired composites incorporating complex designs, such as functional gradients and hierarchical organizations. Finally, as a showcase of the proposed approach, the inverse coarse-graining is combined with a theoretical model of bone tissue adaptation to optimize the microarchitecture of a 3D-printed femur. The predicted properties were in exceptionally good agreement with the corresponding experimental results. Therefore, the coarse-graining method allows the design of advanced architected materials with tunable and predictable properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据