4.8 Article

Unraveling pore structure alternations in 3D-printed geopolymer concrete and corresponding impacts on macro-properties

期刊

ADDITIVE MANUFACTURING
卷 59, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2022.103137

关键词

3D-printed concrete; Pore structure; Pore elongation; Mechanical anisotropy; Interface

资金

  1. National Natural Science Foundation of China [52130210]

向作者/读者索取更多资源

This study analyzes the pore structure alternations in 3D-printed geopolymer concrete (3DPGC) compared to cast concrete, and finds that 3DPGC has larger porosity, coarser pore size distribution, and higher pore surface area. The pulling stress during the extrusion process contributes to the pore elongation of printed concrete, leading to mechanical anisotropy. This research is important for improving the performance of 3D-printed concrete.
Extrusion-based 3D-printed concrete (3DPC) structures are reported to hold mechanical anisotropy behaviors and weak transport properties compared with cast concrete. Fundamental insights into the pore structure discrepancy between printed and cast concrete are essential to the performance prediction and improvement strategy for 3DPC. This study analyzes the pore structure alternations in 3D-printed geopolymer concrete (3DPGC) with cast ones as the reference. Several pore characteristics, i.e., pore volume, distribution, specific surface area (SSA), shape and connectivity are investigated via X-ray CT and MIP. The results demonstrate that a larger porosity, coarser pore size distribution and higher pore SSA exist in 3DPGC compared with CGC. The coarser pore size distribution respectively lies in large voids (>0.2 mm) and small pores (<400 nm) for printed concrete. The pulling stress applied by nozzle movements during the extrusion process contributes to the pore elongation of printed concrete. The mechanical anisotropy of printed concrete without fibers originates from two factors: (i) Oriented pore elongation induces the discrepancy in stress concentration and deformation, and (ii) The weak interlayer presence may cause sliding between layers during loading. However, the pore elongation effect decays with the pore size reduction, limiting its impact on mechanical-anisotropic behaviors. Targeted strategies are then proposed for the matrix strengthening and mechanical anisotropy mitigation in printed concrete.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据