4.8 Article

Controlling grain size, morphology and texture in additively manufactured 13-titanium alloy with super transus hot isostatic pressing

期刊

ADDITIVE MANUFACTURING
卷 59, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.addma.2022.103176

关键词

Additive manufacturing; Titanium alloys; Grain refinement; Hot isostatic pressing; Recrystallisation

资金

  1. Australian Research Council Research Hub for Advanced Manufacturing of Medical Devices [IH150100024]

向作者/读者索取更多资源

This study investigates the improvement of columnar grain structure in titanium alloys by thermal post processing treatments. The results show that Hot Isostatic Pressing (HIPing) can promote the formation of equiaxed grains, significantly refine the grain size, and weaken the texture intensity. Evidence of grain recrystallization processes including discontinuous dynamic recrystallization (DDRX) and dynamic recovery (DRV) is also observed.
Titanium alloys produced by Additive Manufacturing (AM) are often characterised as having coarse columnar grain structures on account of the prevailing thermal conditions at the time of solidification. This work in-vestigates whether thermal post processing treatments above the beta-transus temperature at both standard at-mospheric pressure and 1500 bar pressure (Hot Isostatic Pressing - HIPing) can refine the columnar morphology in the high strength Ti-3Al-8V-6Cr-4Mo-4Zr (Beta-C/ASTM Grade 19) alloy produced by AM. Heat treatment at standard atmospheric pressure was ineffective in modifying the coarse columnar microstructure but HIPing was found to promote new equiaxed grains and significantly refine the grain size by up to 72.5% compared to the as -built component. The strong dominant <001> texture characteristic of the as-built (and heat treated) alloy was weakened and shifted towards <103> with a 5-fold reduction in texture intensity after the HIPing process. EBSD analysis reveals evidence of grain recrystallisation processes including but not limited to discontinuous dynamic recrystallisation (DDRX) which may be associated with pore collapse. Primitive columnar grains were also shown to contain numerous substructures which may have formed through dynamic recovery (DRV).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据