4.6 Article

Scalable Fabrication of Metallic Conductive Fibers from Rheological Tunable Semi-Liquid Metals

期刊

RESEARCH
卷 2022, 期 -, 页码 -

出版社

AMER ASSOC ADVANCEMENT SCIENCE
DOI: 10.34133/2022/9890686

关键词

-

资金

  1. National Natural Science Foundation of China
  2. [52173249]

向作者/读者索取更多资源

This research successfully addresses the heavy phase segregation between polymers and conductive inorganic materials to obtain semiliquid metal polymer fibers (SLMPFs) with ultrahigh electrical conductivity, remarkable thermal processability, and considerable mechanical performance.
Conductive polymer fibers/wires (CPFs) are important materials in modern technologies due to their unique one-dimension geometry, electrical conductivity, and flexibility. However, the advanced applications of current CPFs are limited by their low electrical conductivities (<500 S/m) and poor interfacial interactions between conductive fillers (e.g., graphite) and polymers. Therefore, in current electrical applications, metal wires/foils like copper and aluminum are the most frequently utilized conductive fibers/wires instead of the inferior conductive CPFs. This work successfully addresses the heavy phase segregation between polymers and conductive inorganic materials to obtain semiliquid metal polymer fibers (SLMPFs) which exhibit an ultrahigh electrical conductivity (over 10(6) S/m), remarkable thermal processability, and considerable mechanical performance (Young's modulus: similar to 300 MPa). Semiliquid metal (gallium-tin alloy) with tunable viscosities is the key to achieve the excellent miscibility between metals and polymers. Both the rheological results and numerical simulations demonstrate the critical viscosity matching for the successful preparation of the fibers. More importantly, the fibers are adapted with classic polymer melt-processing like melt injection, which indicates the scalable production of the highly conductive fibers. The SLMPFs are highly promising substitutes for metal wires/fibers in modern electrical applications such as electricity transmission, data communication, and underwater works.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据