4.7 Article

Digestive Tract Morphology and Gut Microbiota Jointly Determine an Efficient Digestive Strategy in Subterranean Rodents: Plateau Zokor

期刊

ANIMALS
卷 12, 期 16, 页码 -

出版社

MDPI
DOI: 10.3390/ani12162155

关键词

subterranean; plateau zokor; Myospalax baileyi; digestive tract morphology; gut microbiota; digestion strategy; crude fiber

资金

  1. National Natural Science Foundation of China [31760622]

向作者/读者索取更多资源

This study compared the digestive tracts of plateau zokor and laboratory rats, revealing that the digestive tract of plateau zokor is longer and heavier, particularly in the large intestine and cecum. Microbiome analysis showed that bacteria associated with cellulose degradation were enriched in laboratory rats. However, both plateau zokor and laboratory rats had similar functions in carbohydrate metabolism and energy metabolism.
Simple Summary Investigation of mechanistic insights of digestive strategies in rodents can be difficult, but it is important to understand how rodents adapt to different environments. Applying physiological analyses to compare the differences between digestive tracts in plateau zokor and laboratory rats, we found that the length and weight of the digestive tract of the plateau zokor was significantly greater than the laboratory rat. Particularly, the weight and length of the large intestine and cecum in plateau zokor is three times that of the laboratory rat. Our gut microbiota analysis results showed that bacteria associated with cellulose degradation were significantly enriched in laboratory rats, when compared to plateau zokor. However, both plateau zokor and laboratory rats were predicted to share the same functions in carbohydrate metabolism and energy metabolism. Our findings suggest that both the morphology of the digestive tract and gut microbiota are vital to the digestion in wild rodents. Rodents' lifestyles vary in different environments, and to adapt to various lifestyles specific digestion strategies have been developed. Among these strategies, the morphology of the digestive tracts and the gut microbiota are considered to play the most important roles in such adaptations. However, how subterranean rodents adapt to extreme environments through regulating gut microbial diversity and morphology of the digestive tract has yet to be fully studied. Here, we conducted the comparisons of the gastrointestinal morphology, food intake, food assimilation, food digestibility and gut microbiota of plateau zokor Eospalax baileyi in Qinghai-Tibet Plateau and laboratory rats Rattus norvegicus to further understand the survival strategy in a typical subterranean rodent species endemic to the Qinghai-Tibet Plateau. Our results revealed that plateau zokor evolved an efficient foraging strategy with low food intake, high food digestibility, and ultimately achieved a similar amount of food assimilation to laboratory rats. The length and weight of the digestive tract of the plateau zokor was significantly higher than the laboratory rat. Particularly, the weight and length of the large intestine and cecum in plateau zokor is three times greater than that of the laboratory rat. Microbiome analysis showed that genus (i.e., Prevotella, Oscillospira, CF231, Ruminococcus and Bacteroides), which are usually associated with cellulose degradation, were significantly enriched in laboratory rats, compared to plateau zokor. However, prediction of metagenomic function revealed that both plateau zokor and laboratory rats shared the same functions in carbohydrate metabolism and energy metabolism. The higher digestibility of crude fiber in plateau zokor was mainly driven by the sizes of cecum and cecum tract, as well as those gut microbiota which associated with cellulose degradation. Altogether, our results highlight that both gut microbiota and the morphology of the digestive tract are vital to the digestion in wild rodents.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据