4.3 Article

Clinical features and functions of a novel Lpl mutation C.986A>C (p.Y329S) in patient with hypertriglyceridemia

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.retram.2022.103337

关键词

-

向作者/读者索取更多资源

This study investigated the clinical features and functions of a new lipoprotein lipase gene mutation in hypertriglyceridemia patients from a Chinese family. The mutation was found to weaken the activity of LPL and may be a pathogenic mutation of hypertriglyceridemia. Treatment with fenofibrate effectively controlled the triglyceride level in the patient.
Objective: To investigate and assess the clinical features and functions of a new lipoprotein lipase (Lpl) gene mutation c.986A>C (p.Y329S) found in hypertriglyceridemia(HTG) patients from a Chinese family. Methods: Five members of a family with the proband were diagnosed with HTG were investigated, and fasting peripheral blood was collected . The plasma was then used to measure triglycerides (TG), total cholesterol (TC), low-density lipoprotein (LDL), high-density lipoprotein cholesterol (HDL-C), free fatty acids (FFA), and glucose tolerance. Following that, genomic deoxyribonucleic acid (DNA) was extracted from whole-blood samples using the QIAamp whole-blood DNA kit, and the coding exon regions and flanking regions of 95 dyslipidemia-related genes were captured using GenCap liquid-phase target gene capture technology. The activity of LPL and its mutation were then determined using cell assays, and the newly discovered LPL mutant was functionally analyzed. The binding site of fenofibrate and LPL, as well as the mutation, were subjected to predictive analysis. Results: The LPL gene's c.986A>C (p.Y329S) heterozygous mutation was discovered, and patients with the mutation had the typical phenotype of LPL deficiency and weakened LPL activity. Furthermore, this mutant has been treated with fenofibrate, and its triglyceride level is perfectly controlled and stable. The prediction analysis of the fenofibrate and LPL binding sites reveals that the wild-type system, Phe378 contributes most to the binding energy of fenofibrate. In the mutant system, Tyr394, which contributes the most to the binding energy of fenofibrate, the contribution of S329 is greater than that of Y329 (0.9 >> 0.7 kal/mol). After Y329 is mutated, the hydrogen bond data of fenofibrate and LPL will also increase to quote H-bond diagrams. Conclusions: A heterozygous mutation c.986A>C (p.Y329S) in exon 6 of Lpl gene occurs in the proband with familial HTG. Lpl c.986A>C (p.Y329S) mutation weakens the activity of the LPL, which may be the pathogenic mutation of HTG. In addition, The proband has been treated with fenofibrate and the triglyceride level is ideally controlled and stable. The prediction analysis of the fenofibrate and LPL binding site shows that the wild-type system, Phe378 contributes most to the binding energy of fenofibrate. In the mutant system, Tyr394, which contributes the most to the binding energy of fenofibrate, the contribution of S329 is greater than that of Y329 (0.9 >> 0.7 kal/mol). After Y329 is mutated, the hydrogen bond data of fenofibrate and LPL will also increase, which may be one of the reasons why the mutation has no effect on the therapeutic effect of fenofibrate. (c) 2022 Published by Elsevier Masson SAS.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据