4.6 Article

CT-based radiomic nomogram for preoperative prediction of DNA mismatch repair deficiency in gastric cancer

期刊

FRONTIERS IN ONCOLOGY
卷 12, 期 -, 页码 -

出版社

FRONTIERS MEDIA SA
DOI: 10.3389/fonc.2022.883109

关键词

gastric cancer (GC); radiomics; microsatellite instability; nomogram; LASSO; DNA mismatch repair deficiency

类别

资金

  1. National Natural Science Foundation of China
  2. Key R&D General Project of Jiangxi Science and Technology Department
  3. Youth Fund of Jiangxi Provincial Science and Technology Department
  4. [81860428]
  5. [20203 BBGL73187]
  6. [20202 BABL216051]

向作者/读者索取更多资源

The study developed a CT-based radiomic nomogram for accurately predicting MMR protein status in gastric cancer preoperatively. The model showed good performance in validation across multiple independent cohorts.
BackgroundDNA mismatch repair (MMR) deficiency has attracted considerable attention as a predictor of the immunotherapy efficacy of solid tumors, including gastric cancer. We aimed to develop and validate a computed tomography (CT)-based radiomic nomogram for the preoperative prediction of MMR deficiency in gastric cancer (GC). MethodsIn this retrospective analysis, 225 and 91 GC patients from two distinct hospital cohorts were included. Cohort 1 was randomly divided into a training cohort (n = 176) and an internal validation cohort (n = 76), whereas cohort 2 was considered an external validation cohort. Based on repeatable radiomic features, a radiomic signature was constructed using the least absolute shrinkage and selection operator (LASSO) regression analysis. We employed multivariable logistic regression analysis to build a radiomics-based model based on radiomic features and preoperative clinical characteristics. Furthermore, this prediction model was presented as a radiomic nomogram, which was evaluated in the training, internal validation, and external validation cohorts. ResultsThe radiomic signature composed of 15 robust features showed a significant association with MMR protein status in the training, internal validation, and external validation cohorts (both P-values <0.001). A radiomic nomogram incorporating a radiomic signature and two clinical characteristics (age and CT-reported N stage) represented good discrimination in the training cohort with an AUC of 0.902 (95% CI: 0.853-0.951), in the internal validation cohort with an AUC of 0.972 (95% CI: 0.945-1.000) and in the external validation cohort with an AUC of 0.891 (95% CI: 0.825-0.958). ConclusionThe CT-based radiomic nomogram showed good performance for preoperative prediction of MMR protein status in GC. Furthermore, this model was a noninvasive tool to predict MMR protein status and guide neoadjuvant therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据