4.8 Article

Predicting glass structure by physics-informed machine learning

期刊

NPJ COMPUTATIONAL MATERIALS
卷 8, 期 1, 页码 -

出版社

NATURE PORTFOLIO
DOI: 10.1038/s41524-022-00882-9

关键词

-

资金

  1. Independent Research Fund Denmark [7017-00019]
  2. Danish Ministry of Higher Education and Science [9095-00019A]
  3. National Science Foundation [DMR- 1944510, DMR-1928538, CMMI-1826420]

向作者/读者索取更多资源

This study introduces a novel approach combining statistical mechanics and machine learning to accurately predict the structure of glasses, improving both interpolation and extrapolation abilities.
Machine learning (ML) is emerging as a powerful tool to predict the properties of materials, including glasses. Informing ML models with knowledge of how glass composition affects short-range atomic structure has the potential to enhance the ability of composition-property models to extrapolate accurately outside of their training sets. Here, we introduce an approach wherein statistical mechanics informs a ML model that can predict the non-linear composition-structure relations in oxide glasses. This combined model offers an improved prediction compared to models relying solely on statistical physics or machine learning individually. Specifically, we show that the combined model accurately both interpolates and extrapolates the structure of Na2O-SiO2 glasses. Importantly, the model is able to extrapolate predictions outside its training set, which is evidenced by the fact that it is able to predict the structure of a glass series that was kept fully hidden from the model during its training.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据