4.7 Article

Experimental investigations on mechanical properties of multi-layered structure fabricated by GMAW-based WAAM of SS316L

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmrt.2022.08.074

关键词

Multi-layered structures; Gas metal arc welding (GMAW); Wire-arc additive manufacturing (WAAM); Mechanical properties; Microstructure; Stainless steels 316L

向作者/读者索取更多资源

In this study, a multi-layered structure was fabricated using the GMAW-based WAAM process on SS316L, and its microstructure, macrostructure, and mechanical properties were examined. The results showed that the structure produced by this process meets industrial standards and exhibits good ductility and strength.
In the present study, the Gas metal arc welding (GMAW) based Wire-arc additive manufacturing (WAAM) process was used to fabricate a multi-layered structure at opti-mized process parameters on SS316L using metal wire of SS316L. The multi-layered structure's microstructure, macrostructure, and mechanical properties (tensile test, impact test, microhardness, and fractography) were examined at three locations at the top, middle, and bottom sides of the structure. Macrostructure at different zones has confirmed an appropriate bonding between the two layers, complete fusion without oxidation, and free from defects and unwanted geometries. Microstructure results have observed a colony of columnar dendrites in the bottom zone, coarser grains with vertical growth along with the residual ferrite in the middle zone, and vertical dendritic structure with residual ferrite in skeletal shape in the top zone. Results of all tensile properties for top, middle and bottom zone developed by the WAAM process fall in the range values of wrought SS 316 L. The microhardness values were shown a consistent behavior across the built structure in all three zones. The obtained average value for the impact test has shown better strength than commercially used wrought SS 316 L. The results of fractured tensile and fracture impact test specimens revealed many dimples, which suggests a good ductility of the as -built structure. Thus, the obtained results have shown that the built structure using the GMAW-based WAAM process matches the standards for industrial applications. (C) 2022 The Author(s). Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据