4.5 Article

Decadal and Annual Variations in Meteoric Flux From Ulysses, Wind, and SOFIE Observations

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022JA030749

关键词

meteoric influx; SOFIE; Wind; Ulysses; interstellar dust; meteoric smoke

资金

  1. AIM mission through NASA [NAS5-03132]
  2. European Union [N851544]
  3. Wind MODA funds

向作者/读者索取更多资源

This study examines the variations in interstellar and interplanetary dust flux at Earth using observations from three different satellite techniques. The findings show a correlation between dust influx and the solar magnetic cycle, suggesting that interplanetary dust may respond to changes in the solar magnetic field.
Our solar system is filled with meteoric particles, or cosmic dust, which is either interplanetary or interstellar in origin. Interstellar dust (ISD) enters the heliosphere due to the relative motion of the sun and the interstellar flow. Interplanetary dust (IPD) comes primarily from asteroid collisions or comet sublimation, and comprises the bulk of material entering Earth's atmosphere. This study examines variations in ISD and the IPD flux at Earth using observations from three different satellite techniques. First are size-resolved in situ meteoroid detections by the Ulysses spacecraft, and second are in situ indirect dust observations by Wind. Third are measurements of meteoric smoke in the mesosphere by the Solar Occultation For Ice Experiment (SOFIE). Wind and Ulysses observations are sorted into the interstellar and interplanetary components. Wind ISD show the anticipated correlation to the 22-year solar magnetic cycle, and are consistent with model predictions of ISD. Because Wind does not discriminate particle size, the IPD measurements were interpreted using meteoric mass distributions from Ulysses observations and from different models. Wind observations during 2007-2020 indicate a total meteoric influx at Earth of 22 metric tons per day (t d(-1)), in reasonable agreement with long-term averages from SOFIE (25 t d(-1)) and Ulysses (32 t d(-1)). The SOFIE and Wind influx time series both show an unexpected correlation to the 22-year solar cycle. This relationship could be an artifact, or may indicate that IPD responds to changes in the solar magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据