4.7 Article

Bayesian Paleomagnetic Euler Pole Inversion for Paleogeographic Reconstruction and Analysis

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2021JB023890

关键词

-

资金

  1. National Science Foundation [EAR-1246670, EAR-1847277]
  2. Peder Sather Center for Advanced Study

向作者/读者索取更多资源

This paper describes a new method for synthesizing apparent polar wander paths (APWPs), which can be used to reconstruct past paleogeography and plate motions. The method incorporates uncertainties in pole positions and age, and provides estimates for full-vector plate motion and associated uncertainty. The application of this method to synthetic data and case studies demonstrates its capabilities.
Apparent polar wander paths (APWPs) synthesized from paleomagnetic poles provide the most direct data for reconstructing past paleogeography and plate motions for times earlier than ca. 200 Ma. In this contribution, we describe a new method for APWP synthesis that extends the paleomagnetic Euler pole analysis of Gordon et al. (1984, ) by placing it within the framework of a Bayesian inverse problem. This approach incorporates uncertainties in pole positions and age that are often ignored in standard treatments. The paleomagnetic Euler poles resulting from the inversions provide estimates for full-vector plate motion (both latitude and longitude) and associated uncertainty. The method allows for inverting for one or more Euler poles with the timing of changepoints being solved as part of the inversion. In addition, the method allows the incorporation of true polar wander rotations, thus providing an avenue for probabilistic partitioning of plate tectonic motion and true polar wander based on paleomagnetic poles. We show example inversions on synthetic data to demonstrate the method's capabilities. We illustrate application of the method to Cenozoic Australia paleomagnetic poles which can be compared to independent plate reconstructions. A two-Euler pole inversion for the Australian record recovers northward acceleration of Australia in the Eocene with rates that are consistent with plate reconstructions. We also apply the method to constrain rapid rates of motion for cratonic North America associated with the Keweenawan Track of late Mesoproterozoic paleomagnetic poles. The application of Markov chain Monte Carlo methods to estimate paleomagnetic Euler poles can open new directions in quantitative paleogeography.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据