4.5 Article

Inception of Regular Valley Spacing in Fluvial Landscapes: A Linear Stability Analysis

期刊

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2022JF006716

关键词

landscape evolution; channel formation; linear stability analysis; numerical modeling; fluvial erosion; spectral method

向作者/读者索取更多资源

This article presents a linear stability theory for incipient valley formation in mountainous landscapes, and validates the theory through numerical simulations and topographic data.
Incipient valley formation in mountainous landscapes is often associated with their presence at a regular spacing under diverse hydroclimatic forcings. Here we provide a formal linear stability theory for a landscape evolution model representing the action of tectonic uplift, diffusive soil creep, and detachment-limited fluvial erosion. For configurations dominated by only one horizontal length scale, a single dimensionless quantity characterizes the overall system dynamics based on model parameters and boundary conditions. The stability analysis is conducted for smooth and symmetric hillslopes along a long mountain ridge to study the impact of the erosion law form on regular first-order valley formation. The results provide the critical condition when smooth landscapes become unstable and give rise to a characteristic length scale for incipient valleys, which is related to the scaling exponents that couple fluvial erosion to the specific drainage area and the local slope. The valley spacing at first instability is uniquely related to the ratio of the scaling exponents and widens with an increase in this ratio. We find compelling evidence of sediment transport by diffusive creep and fluvial erosion coupled with the specific drainage area equation as a sufficient mechanism for first-order valley formation. We finally show that the predictions of the linear stability analysis conform with the results of numerical simulations for different degrees of nonlinearity in the erosion law and agree well with topographic data from a natural landscape.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据