4.7 Article

Role of the cystathionine β-synthase/H2S pathway in the development of cellular metabolic dysfunction and pseudohypoxia in down syndrome

期刊

REDOX BIOLOGY
卷 55, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.redox.2022.102416

关键词

Down syndrome; Metabolism; Oxidative phosphorylation; Glycolysis; Hydrogen sulfide

资金

  1. Jerome LeJeune Foun-dation (Paris, France)
  2. HiLIFE and Biocenter Finland

向作者/读者索取更多资源

Increased H2S generation in Down syndrome (DS) promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.
Background: Overexpression of the transsulfuration enzyme cystathionine-beta-synthase (CBS), and overproduction of its product, hydrogen sulfide (H2S) are recognized as potential pathogenetic factors in Down syndrome (DS). The purpose of the study was to determine how the mitochondrial function and core metabolic pathways are affected by DS and how pharmacological inhibition of CBS affects these parameters. Methods: 8 human control and 8 human DS fibroblast cell lines have been subjected to bioenergetic and fluxomic and proteomic analysis with and without treatment with a pharmacological inhibitor of CBS. Results: DS cells exhibited a significantly higher CBS expression than control cells, and produced more H2S. They also exhibited suppressed mitochondrial electron transport and oxygen consumption and suppressed Complex IV activity, impaired cell proliferation and increased ROS generation. Inhibition of H2S biosynthesis with aminooxyacetic acid reduced cellular H2S, improved cellular bioenergetics, attenuated ROS and improved proliferation. C-13 glucose fluxomic analysis revealed that DS cells exhibit a suppression of the Krebs cycle activity with a compensatory increase in glycolysis. CBS inhibition restored the flux from glycolysis to the Krebs cycle and reactivated oxidative phosphorylation. Proteomic analysis revealed no CBS-dependent alterations in the expression level of the enzymes involved in glycolysis, oxidative phosphorylation and the pentose phosphate pathway. DS was associated with the dysregulation of several components of the autophagy network; CBS inhibition normalized several of these parameters. Conclusions: Increased H2S generation in DS promotes pseudohypoxia and contributes to cellular metabolic dysfunction by causing a shift from oxidative phosphorylation to glycolysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据