4.7 Article

Empagliflozin activates Wnt/β-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance against type-3 cardiorenal syndrome

期刊

MOLECULAR METABOLISM
卷 64, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.molmet.2022.101553

关键词

Empagliflozin; Cardiorenal syndrome type-3; FUNDC1; beta-catenin; Mitochondria

资金

  1. National Natural Science Foundation of China [82102262]
  2. Guangdong Basic and Applied Basic Research Foundation [2021A1515010977, 2020A1515110174]

向作者/读者索取更多资源

In this study, it was found that empagliflozin activated Wnt/β-catenin signaling to stimulate FUNDC1-dependent mitophagy, improving mitochondrial function and cardiac performance in a mouse model of CRS-3.
Objectives: Cardiorenal syndrome type-3 (CRS-3) is an abrupt worsening of cardiac function secondary to acute kidney injury. Mitochondrial dysfunction is a key pathological mechanism of CRS-3, and empagliflozin can improve mitochondrial biology by promoting mitophagy. Here, we assessed the effects of empagliflozin on mitochondrial quality surveillance in a mouse model of CRS-3. Methods: Cardiomyocyte-specific FUNDC1-knockout (FUNDC1(CKO)) mice were subjected to CRS-3 prior to assessment of mitochondrial homeostasis in the presence or absence of empagliflozin. Results: CRS-3 model mice exhibited lower heart function, increased inflammatory responses and exacerbated myocardial oxidative stress than sham-operated controls; however, empagliflozin attenuated these alterations. Empagliflozin stabilized the mitochondrial membrane potential, suppressed mitochondrial reactive oxygen species production, increased mitochondrial respiratory complex activity and restored the oxygen consumption rate in cardiomyocytes from CRS-3 model mice. Empagliflozin also normalized the mitochondrial morphology, mitochondrial dynamics and mitochondrial permeability transition pore opening rate in cardiomyocytes. Cardiomyocyte-specific ablation of FUN14 domain-containing protein 1 (FUNDC1) in mice abolished the protective effects of empagliflozin on mitochondrial homeostasis and myocardial performance. Empagliflozin activated beta-catenin and promoted its nuclear retention, thus increasing FUNDC1-induced mitophagy in heart tissues; however, a beta-catenin inhibitor reversed these effects. Conclusions: In summary, empagliflozin activated Wnt/beta-catenin to stimulate FUNDC1-dependent mitochondrial quality surveillance, ultimately improving mitochondrial function and cardiac performance during CRS-3. Thus, empagliflozin could be considered for the clinical management of heart function following acute kidney injury. (C) 2022 The Author(s). Published by Elsevier GmbH.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据