4.7 Article

Active mechanical metamaterial with embedded piezoelectric actuation

期刊

APL MATERIALS
卷 10, 期 9, 页码 -

出版社

AIP Publishing
DOI: 10.1063/5.0101420

关键词

-

向作者/读者索取更多资源

Metamaterials are artificially structured materials with unique properties that do not exist in nature. Mechanical metamaterials aim to overcome limitations by embedding actuation into the unit elements, enabling control of material properties and mechanical states. This study proposes and investigates an active mechanical metamaterial concept that can actively control force and deformation distribution within its lattice.
Metamaterials are artificially structured materials and exhibit properties that are uncommon or non-existent in nature. Mechanical metamaterials show exotic mechanical properties, such as negative stiffness, vanishing shear modulus, or negative Poisson's ratio. These properties stem from the geometry and arrangement of the metamaterial unit elements and, therefore, cannot be altered after fabrication. Active mechanical metamaterials aim to overcome this limitation by embedding actuation into the metamaterial unit elements to alter the material properties or mechanical state. This could pave the way for a variety of applications in industries, such as aerospace, robotics, and high-tech engineering. This work proposes and studies an active mechanical metamaterial concept that can actively control the force and deformation distribution within its lattice. Individually controllable actuation units are designed based on piezostack actuators and compliant mechanisms and interconnected into an active metamaterial lattice. Both the actuation units and the metamaterial lattice are modeled, built, and experimentally studied. In experiments, the actuation units attained 240 and 1510 mu m extensions, respectively, in quasi-static and resonant operation at 81 Hz, and 0.3 N blocked force at frequencies up to 100 Hz. Quasi-static experiments on the active metamaterial lattice prototype demonstrated morphing into four different configurations: Tilt left, tilt right, convex, and concave profiles. This demonstrated the feasibility of altering the force and deformation distribution within the mechanical metamaterial lattice. Much more research is expected to follow in this field since the actively tuneable mechanical state and properties can enable qualitatively new engineering solutions. (C) 2022 Author(s).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据